Enter a problem...
Calculus Examples
f(x)=2x3-27x2+108xf(x)=2x3−27x2+108x on 2 , 7
Step 1
Step 1.1
Find the first derivative.
Step 1.1.1
Find the first derivative.
Step 1.1.1.1
By the Sum Rule, the derivative of 2x3-27x2+108x with respect to x is ddx[2x3]+ddx[-27x2]+ddx[108x].
ddx[2x3]+ddx[-27x2]+ddx[108x]
Step 1.1.1.2
Evaluate ddx[2x3].
Step 1.1.1.2.1
Since 2 is constant with respect to x, the derivative of 2x3 with respect to x is 2ddx[x3].
2ddx[x3]+ddx[-27x2]+ddx[108x]
Step 1.1.1.2.2
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=3.
2(3x2)+ddx[-27x2]+ddx[108x]
Step 1.1.1.2.3
Multiply 3 by 2.
6x2+ddx[-27x2]+ddx[108x]
6x2+ddx[-27x2]+ddx[108x]
Step 1.1.1.3
Evaluate ddx[-27x2].
Step 1.1.1.3.1
Since -27 is constant with respect to x, the derivative of -27x2 with respect to x is -27ddx[x2].
6x2-27ddx[x2]+ddx[108x]
Step 1.1.1.3.2
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=2.
6x2-27(2x)+ddx[108x]
Step 1.1.1.3.3
Multiply 2 by -27.
6x2-54x+ddx[108x]
6x2-54x+ddx[108x]
Step 1.1.1.4
Evaluate ddx[108x].
Step 1.1.1.4.1
Since 108 is constant with respect to x, the derivative of 108x with respect to x is 108ddx[x].
6x2-54x+108ddx[x]
Step 1.1.1.4.2
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=1.
6x2-54x+108⋅1
Step 1.1.1.4.3
Multiply 108 by 1.
f′(x)=6x2-54x+108
f′(x)=6x2-54x+108
f′(x)=6x2-54x+108
Step 1.1.2
The first derivative of f(x) with respect to x is 6x2-54x+108.
6x2-54x+108
6x2-54x+108
Step 1.2
Set the first derivative equal to 0 then solve the equation 6x2-54x+108=0.
Step 1.2.1
Set the first derivative equal to 0.
6x2-54x+108=0
Step 1.2.2
Factor the left side of the equation.
Step 1.2.2.1
Factor 6 out of 6x2-54x+108.
Step 1.2.2.1.1
Factor 6 out of 6x2.
6(x2)-54x+108=0
Step 1.2.2.1.2
Factor 6 out of -54x.
6(x2)+6(-9x)+108=0
Step 1.2.2.1.3
Factor 6 out of 108.
6x2+6(-9x)+6⋅18=0
Step 1.2.2.1.4
Factor 6 out of 6x2+6(-9x).
6(x2-9x)+6⋅18=0
Step 1.2.2.1.5
Factor 6 out of 6(x2-9x)+6⋅18.
6(x2-9x+18)=0
6(x2-9x+18)=0
Step 1.2.2.2
Factor.
Step 1.2.2.2.1
Factor x2-9x+18 using the AC method.
Step 1.2.2.2.1.1
Consider the form x2+bx+c. Find a pair of integers whose product is c and whose sum is b. In this case, whose product is 18 and whose sum is -9.
-6,-3
Step 1.2.2.2.1.2
Write the factored form using these integers.
6((x-6)(x-3))=0
6((x-6)(x-3))=0
Step 1.2.2.2.2
Remove unnecessary parentheses.
6(x-6)(x-3)=0
6(x-6)(x-3)=0
6(x-6)(x-3)=0
Step 1.2.3
If any individual factor on the left side of the equation is equal to 0, the entire expression will be equal to 0.
x-6=0
x-3=0
Step 1.2.4
Set x-6 equal to 0 and solve for x.
Step 1.2.4.1
Set x-6 equal to 0.
x-6=0
Step 1.2.4.2
Add 6 to both sides of the equation.
x=6
x=6
Step 1.2.5
Set x-3 equal to 0 and solve for x.
Step 1.2.5.1
Set x-3 equal to 0.
x-3=0
Step 1.2.5.2
Add 3 to both sides of the equation.
x=3
x=3
Step 1.2.6
The final solution is all the values that make 6(x-6)(x-3)=0 true.
x=6,3
x=6,3
Step 1.3
Find the values where the derivative is undefined.
Step 1.3.1
The domain of the expression is all real numbers except where the expression is undefined. In this case, there is no real number that makes the expression undefined.
Step 1.4
Evaluate 2x3-27x2+108x at each x value where the derivative is 0 or undefined.
Step 1.4.1
Evaluate at x=6.
Step 1.4.1.1
Substitute 6 for x.
2(6)3-27(6)2+108(6)
Step 1.4.1.2
Simplify.
Step 1.4.1.2.1
Simplify each term.
Step 1.4.1.2.1.1
Raise 6 to the power of 3.
2⋅216-27(6)2+108(6)
Step 1.4.1.2.1.2
Multiply 2 by 216.
432-27(6)2+108(6)
Step 1.4.1.2.1.3
Raise 6 to the power of 2.
432-27⋅36+108(6)
Step 1.4.1.2.1.4
Multiply -27 by 36.
432-972+108(6)
Step 1.4.1.2.1.5
Multiply 108 by 6.
432-972+648
432-972+648
Step 1.4.1.2.2
Simplify by adding and subtracting.
Step 1.4.1.2.2.1
Subtract 972 from 432.
-540+648
Step 1.4.1.2.2.2
Add -540 and 648.
108
108
108
108
Step 1.4.2
Evaluate at x=3.
Step 1.4.2.1
Substitute 3 for x.
2(3)3-27(3)2+108(3)
Step 1.4.2.2
Simplify.
Step 1.4.2.2.1
Simplify each term.
Step 1.4.2.2.1.1
Raise 3 to the power of 3.
2⋅27-27(3)2+108(3)
Step 1.4.2.2.1.2
Multiply 2 by 27.
54-27(3)2+108(3)
Step 1.4.2.2.1.3
Raise 3 to the power of 2.
54-27⋅9+108(3)
Step 1.4.2.2.1.4
Multiply -27 by 9.
54-243+108(3)
Step 1.4.2.2.1.5
Multiply 108 by 3.
54-243+324
54-243+324
Step 1.4.2.2.2
Simplify by adding and subtracting.
Step 1.4.2.2.2.1
Subtract 243 from 54.
-189+324
Step 1.4.2.2.2.2
Add -189 and 324.
135
135
135
135
Step 1.4.3
List all of the points.
(6,108),(3,135)
(6,108),(3,135)
(6,108),(3,135)
Step 2
Step 2.1
Evaluate at x=2.
Step 2.1.1
Substitute 2 for x.
2(2)3-27(2)2+108(2)
Step 2.1.2
Simplify.
Step 2.1.2.1
Simplify each term.
Step 2.1.2.1.1
Multiply 2 by (2)3 by adding the exponents.
Step 2.1.2.1.1.1
Multiply 2 by (2)3.
Step 2.1.2.1.1.1.1
Raise 2 to the power of 1.
21(2)3-27(2)2+108(2)
Step 2.1.2.1.1.1.2
Use the power rule aman=am+n to combine exponents.
21+3-27(2)2+108(2)
21+3-27(2)2+108(2)
Step 2.1.2.1.1.2
Add 1 and 3.
24-27(2)2+108(2)
24-27(2)2+108(2)
Step 2.1.2.1.2
Raise 2 to the power of 4.
16-27(2)2+108(2)
Step 2.1.2.1.3
Raise 2 to the power of 2.
16-27⋅4+108(2)
Step 2.1.2.1.4
Multiply -27 by 4.
16-108+108(2)
Step 2.1.2.1.5
Multiply 108 by 2.
16-108+216
16-108+216
Step 2.1.2.2
Simplify by adding and subtracting.
Step 2.1.2.2.1
Subtract 108 from 16.
-92+216
Step 2.1.2.2.2
Add -92 and 216.
124
124
124
124
Step 2.2
Evaluate at x=7.
Step 2.2.1
Substitute 7 for x.
2(7)3-27(7)2+108(7)
Step 2.2.2
Simplify.
Step 2.2.2.1
Simplify each term.
Step 2.2.2.1.1
Raise 7 to the power of 3.
2⋅343-27(7)2+108(7)
Step 2.2.2.1.2
Multiply 2 by 343.
686-27(7)2+108(7)
Step 2.2.2.1.3
Raise 7 to the power of 2.
686-27⋅49+108(7)
Step 2.2.2.1.4
Multiply -27 by 49.
686-1323+108(7)
Step 2.2.2.1.5
Multiply 108 by 7.
686-1323+756
686-1323+756
Step 2.2.2.2
Simplify by adding and subtracting.
Step 2.2.2.2.1
Subtract 1323 from 686.
-637+756
Step 2.2.2.2.2
Add -637 and 756.
119
119
119
119
Step 2.3
List all of the points.
(2,124),(7,119)
(2,124),(7,119)
Step 3
Compare the f(x) values found for each value of x in order to determine the absolute maximum and minimum over the given interval. The maximum will occur at the highest f(x) value and the minimum will occur at the lowest f(x) value.
Absolute Maximum: (3,135)
Absolute Minimum: (6,108)
Step 4