Enter a problem...
Calculus Examples
;
Step 1
Step 1.1
Find the first derivative.
Step 1.1.1
Find the first derivative.
Step 1.1.1.1
Differentiate using the Power Rule which states that is where .
Step 1.1.1.2
To write as a fraction with a common denominator, multiply by .
Step 1.1.1.3
Combine and .
Step 1.1.1.4
Combine the numerators over the common denominator.
Step 1.1.1.5
Simplify the numerator.
Step 1.1.1.5.1
Multiply by .
Step 1.1.1.5.2
Subtract from .
Step 1.1.1.6
Move the negative in front of the fraction.
Step 1.1.1.7
Simplify.
Step 1.1.1.7.1
Rewrite the expression using the negative exponent rule .
Step 1.1.1.7.2
Multiply by .
Step 1.1.2
The first derivative of with respect to is .
Step 1.2
Set the first derivative equal to then solve the equation .
Step 1.2.1
Set the first derivative equal to .
Step 1.2.2
Set the numerator equal to zero.
Step 1.2.3
Since , there are no solutions.
No solution
No solution
Step 1.3
Find the values where the derivative is undefined.
Step 1.3.1
Convert expressions with fractional exponents to radicals.
Step 1.3.1.1
Apply the rule to rewrite the exponentiation as a radical.
Step 1.3.1.2
Anything raised to is the base itself.
Step 1.3.2
Set the denominator in equal to to find where the expression is undefined.
Step 1.3.3
Solve for .
Step 1.3.3.1
To remove the radical on the left side of the equation, cube both sides of the equation.
Step 1.3.3.2
Simplify each side of the equation.
Step 1.3.3.2.1
Use to rewrite as .
Step 1.3.3.2.2
Simplify the left side.
Step 1.3.3.2.2.1
Simplify .
Step 1.3.3.2.2.1.1
Apply the product rule to .
Step 1.3.3.2.2.1.2
Raise to the power of .
Step 1.3.3.2.2.1.3
Multiply the exponents in .
Step 1.3.3.2.2.1.3.1
Apply the power rule and multiply exponents, .
Step 1.3.3.2.2.1.3.2
Cancel the common factor of .
Step 1.3.3.2.2.1.3.2.1
Cancel the common factor.
Step 1.3.3.2.2.1.3.2.2
Rewrite the expression.
Step 1.3.3.2.2.1.4
Simplify.
Step 1.3.3.2.3
Simplify the right side.
Step 1.3.3.2.3.1
Raising to any positive power yields .
Step 1.3.3.3
Divide each term in by and simplify.
Step 1.3.3.3.1
Divide each term in by .
Step 1.3.3.3.2
Simplify the left side.
Step 1.3.3.3.2.1
Cancel the common factor of .
Step 1.3.3.3.2.1.1
Cancel the common factor.
Step 1.3.3.3.2.1.2
Divide by .
Step 1.3.3.3.3
Simplify the right side.
Step 1.3.3.3.3.1
Divide by .
Step 1.4
Evaluate at each value where the derivative is or undefined.
Step 1.4.1
Evaluate at .
Step 1.4.1.1
Substitute for .
Step 1.4.1.2
Simplify.
Step 1.4.1.2.1
Simplify the expression.
Step 1.4.1.2.1.1
Rewrite as .
Step 1.4.1.2.1.2
Apply the power rule and multiply exponents, .
Step 1.4.1.2.2
Cancel the common factor of .
Step 1.4.1.2.2.1
Cancel the common factor.
Step 1.4.1.2.2.2
Rewrite the expression.
Step 1.4.1.2.3
Raising to any positive power yields .
Step 1.4.2
List all of the points.
Step 2
Step 2.1
Evaluate at .
Step 2.1.1
Substitute for .
Step 2.1.2
Simplify.
Step 2.1.2.1
Simplify the expression.
Step 2.1.2.1.1
Rewrite as .
Step 2.1.2.1.2
Apply the power rule and multiply exponents, .
Step 2.1.2.2
Cancel the common factor of .
Step 2.1.2.2.1
Cancel the common factor.
Step 2.1.2.2.2
Rewrite the expression.
Step 2.1.2.3
Raise to the power of .
Step 2.2
Evaluate at .
Step 2.2.1
Substitute for .
Step 2.2.2
One to any power is one.
Step 2.3
List all of the points.
Step 3
Compare the values found for each value of in order to determine the absolute maximum and minimum over the given interval. The maximum will occur at the highest value and the minimum will occur at the lowest value.
Absolute Maximum:
Absolute Minimum:
Step 4