Enter a problem...
Calculus Examples
p=112x2-6x+108p=112x2−6x+108 , 0≤x≤360≤x≤36
Step 1
Step 1.1
Find the first derivative.
Step 1.1.1
Find the first derivative.
Step 1.1.1.1
By the Sum Rule, the derivative of 112x2-6x+108112x2−6x+108 with respect to xx is ddx[112x2]+ddx[-6x]+ddx[108]ddx[112x2]+ddx[−6x]+ddx[108].
ddx[112x2]+ddx[-6x]+ddx[108]ddx[112x2]+ddx[−6x]+ddx[108]
Step 1.1.1.2
Evaluate ddx[112x2]ddx[112x2].
Step 1.1.1.2.1
Since 112112 is constant with respect to xx, the derivative of 112x2112x2 with respect to xx is 112ddx[x2]112ddx[x2].
112ddx[x2]+ddx[-6x]+ddx[108]112ddx[x2]+ddx[−6x]+ddx[108]
Step 1.1.1.2.2
Differentiate using the Power Rule which states that ddx[xn]ddx[xn] is nxn-1nxn−1 where n=2n=2.
112(2x)+ddx[-6x]+ddx[108]112(2x)+ddx[−6x]+ddx[108]
Step 1.1.1.2.3
Combine 22 and 112112.
212x+ddx[-6x]+ddx[108]212x+ddx[−6x]+ddx[108]
Step 1.1.1.2.4
Combine 212212 and xx.
2x12+ddx[-6x]+ddx[108]2x12+ddx[−6x]+ddx[108]
Step 1.1.1.2.5
Cancel the common factor of 22 and 1212.
Step 1.1.1.2.5.1
Factor 22 out of 2x2x.
2(x)12+ddx[-6x]+ddx[108]2(x)12+ddx[−6x]+ddx[108]
Step 1.1.1.2.5.2
Cancel the common factors.
Step 1.1.1.2.5.2.1
Factor 22 out of 1212.
2x2⋅6+ddx[-6x]+ddx[108]2x2⋅6+ddx[−6x]+ddx[108]
Step 1.1.1.2.5.2.2
Cancel the common factor.
2x2⋅6+ddx[-6x]+ddx[108]
Step 1.1.1.2.5.2.3
Rewrite the expression.
x6+ddx[-6x]+ddx[108]
x6+ddx[-6x]+ddx[108]
x6+ddx[-6x]+ddx[108]
x6+ddx[-6x]+ddx[108]
Step 1.1.1.3
Evaluate ddx[-6x].
Step 1.1.1.3.1
Since -6 is constant with respect to x, the derivative of -6x with respect to x is -6ddx[x].
x6-6ddx[x]+ddx[108]
Step 1.1.1.3.2
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=1.
x6-6⋅1+ddx[108]
Step 1.1.1.3.3
Multiply -6 by 1.
x6-6+ddx[108]
x6-6+ddx[108]
Step 1.1.1.4
Differentiate using the Constant Rule.
Step 1.1.1.4.1
Since 108 is constant with respect to x, the derivative of 108 with respect to x is 0.
x6-6+0
Step 1.1.1.4.2
Add x6-6 and 0.
f′(x)=x6-6
f′(x)=x6-6
f′(x)=x6-6
Step 1.1.2
The first derivative of f(x) with respect to x is x6-6.
x6-6
x6-6
Step 1.2
Set the first derivative equal to 0 then solve the equation x6-6=0.
Step 1.2.1
Set the first derivative equal to 0.
x6-6=0
Step 1.2.2
Add 6 to both sides of the equation.
x6=6
Step 1.2.3
Multiply both sides of the equation by 6.
6x6=6⋅6
Step 1.2.4
Simplify both sides of the equation.
Step 1.2.4.1
Simplify the left side.
Step 1.2.4.1.1
Cancel the common factor of 6.
Step 1.2.4.1.1.1
Cancel the common factor.
6x6=6⋅6
Step 1.2.4.1.1.2
Rewrite the expression.
x=6⋅6
x=6⋅6
x=6⋅6
Step 1.2.4.2
Simplify the right side.
Step 1.2.4.2.1
Multiply 6 by 6.
x=36
x=36
x=36
x=36
Step 1.3
Find the values where the derivative is undefined.
Step 1.3.1
The domain of the expression is all real numbers except where the expression is undefined. In this case, there is no real number that makes the expression undefined.
Step 1.4
Evaluate 112x2-6x+108 at each x value where the derivative is 0 or undefined.
Step 1.4.1
Evaluate at x=36.
Step 1.4.1.1
Substitute 36 for x.
112⋅(36)2-6⋅36+108
Step 1.4.1.2
Simplify.
Step 1.4.1.2.1
Simplify each term.
Step 1.4.1.2.1.1
Raise 36 to the power of 2.
112⋅1296-6⋅36+108
Step 1.4.1.2.1.2
Cancel the common factor of 12.
Step 1.4.1.2.1.2.1
Factor 12 out of 1296.
112⋅(12(108))-6⋅36+108
Step 1.4.1.2.1.2.2
Cancel the common factor.
112⋅(12⋅108)-6⋅36+108
Step 1.4.1.2.1.2.3
Rewrite the expression.
108-6⋅36+108
108-6⋅36+108
Step 1.4.1.2.1.3
Multiply -6 by 36.
108-216+108
108-216+108
Step 1.4.1.2.2
Simplify by adding and subtracting.
Step 1.4.1.2.2.1
Subtract 216 from 108.
-108+108
Step 1.4.1.2.2.2
Add -108 and 108.
0
0
0
0
Step 1.4.2
List all of the points.
(36,0)
(36,0)
(36,0)
Step 2
Step 2.1
Evaluate at x=0.
Step 2.1.1
Substitute 0 for x.
112⋅(0)2-6⋅0+108
Step 2.1.2
Simplify.
Step 2.1.2.1
Simplify each term.
Step 2.1.2.1.1
Raising 0 to any positive power yields 0.
112⋅0-6⋅0+108
Step 2.1.2.1.2
Multiply 112 by 0.
0-6⋅0+108
Step 2.1.2.1.3
Multiply -6 by 0.
0+0+108
0+0+108
Step 2.1.2.2
Simplify by adding numbers.
Step 2.1.2.2.1
Add 0 and 0.
0+108
Step 2.1.2.2.2
Add 0 and 108.
108
108
108
108
Step 2.2
Evaluate at x=36.
Step 2.2.1
Substitute 36 for x.
112⋅(36)2-6⋅36+108
Step 2.2.2
Simplify.
Step 2.2.2.1
Simplify each term.
Step 2.2.2.1.1
Raise 36 to the power of 2.
112⋅1296-6⋅36+108
Step 2.2.2.1.2
Cancel the common factor of 12.
Step 2.2.2.1.2.1
Factor 12 out of 1296.
112⋅(12(108))-6⋅36+108
Step 2.2.2.1.2.2
Cancel the common factor.
112⋅(12⋅108)-6⋅36+108
Step 2.2.2.1.2.3
Rewrite the expression.
108-6⋅36+108
108-6⋅36+108
Step 2.2.2.1.3
Multiply -6 by 36.
108-216+108
108-216+108
Step 2.2.2.2
Simplify by adding and subtracting.
Step 2.2.2.2.1
Subtract 216 from 108.
-108+108
Step 2.2.2.2.2
Add -108 and 108.
0
0
0
0
Step 2.3
List all of the points.
(0,108),(36,0)
(0,108),(36,0)
Step 3
Compare the f(x) values found for each value of x in order to determine the absolute maximum and minimum over the given interval. The maximum will occur at the highest f(x) value and the minimum will occur at the lowest f(x) value.
Absolute Maximum: (0,108)
Absolute Minimum: (36,0)
Step 4
