Enter a problem...
Calculus Examples
f(x)=x4-2x3+x+1 , [-1,3]
Step 1
Step 1.1
Find the first derivative.
Step 1.1.1
Find the first derivative.
Step 1.1.1.1
Differentiate.
Step 1.1.1.1.1
By the Sum Rule, the derivative of x4-2x3+x+1 with respect to x is ddx[x4]+ddx[-2x3]+ddx[x]+ddx[1].
f′(x)=ddx(x4)+ddx(-2x3)+ddx(x)+ddx(1)
Step 1.1.1.1.2
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=4.
f′(x)=4x3+ddx(-2x3)+ddx(x)+ddx(1)
f′(x)=4x3+ddx(-2x3)+ddx(x)+ddx(1)
Step 1.1.1.2
Evaluate ddx[-2x3].
Step 1.1.1.2.1
Since -2 is constant with respect to x, the derivative of -2x3 with respect to x is -2ddx[x3].
f′(x)=4x3-2ddxx3+ddx(x)+ddx(1)
Step 1.1.1.2.2
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=3.
f′(x)=4x3-2(3x2)+ddx(x)+ddx(1)
Step 1.1.1.2.3
Multiply 3 by -2.
f′(x)=4x3-6x2+ddx(x)+ddx(1)
f′(x)=4x3-6x2+ddx(x)+ddx(1)
Step 1.1.1.3
Differentiate.
Step 1.1.1.3.1
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=1.
f′(x)=4x3-6x2+1+ddx(1)
Step 1.1.1.3.2
Since 1 is constant with respect to x, the derivative of 1 with respect to x is 0.
f′(x)=4x3-6x2+1+0
Step 1.1.1.3.3
Add 4x3-6x2+1 and 0.
f′(x)=4x3-6x2+1
f′(x)=4x3-6x2+1
f′(x)=4x3-6x2+1
Step 1.1.2
The first derivative of f(x) with respect to x is 4x3-6x2+1.
4x3-6x2+1
4x3-6x2+1
Step 1.2
Set the first derivative equal to 0 then solve the equation 4x3-6x2+1=0.
Step 1.2.1
Set the first derivative equal to 0.
4x3-6x2+1=0
Step 1.2.2
Factor 4x3-6x2+1 using the rational roots test.
Step 1.2.2.1
If a polynomial function has integer coefficients, then every rational zero will have the form pq where p is a factor of the constant and q is a factor of the leading coefficient.
p=±1
q=±1,±4,±2
Step 1.2.2.2
Find every combination of ±pq. These are the possible roots of the polynomial function.
±1,±0.25,±0.5
Step 1.2.2.3
Substitute 0.5 and simplify the expression. In this case, the expression is equal to 0 so 0.5 is a root of the polynomial.
Step 1.2.2.3.1
Substitute 0.5 into the polynomial.
4⋅0.53-6⋅0.52+1
Step 1.2.2.3.2
Raise 0.5 to the power of 3.
4⋅0.125-6⋅0.52+1
Step 1.2.2.3.3
Multiply 4 by 0.125.
0.5-6⋅0.52+1
Step 1.2.2.3.4
Raise 0.5 to the power of 2.
0.5-6⋅0.25+1
Step 1.2.2.3.5
Multiply -6 by 0.25.
0.5-1.5+1
Step 1.2.2.3.6
Subtract 1.5 from 0.5.
-1+1
Step 1.2.2.3.7
Add -1 and 1.
0
0
Step 1.2.2.4
Since 0.5 is a known root, divide the polynomial by 2x-1 to find the quotient polynomial. This polynomial can then be used to find the remaining roots.
4x3-6x2+12x-1
Step 1.2.2.5
Divide 4x3-6x2+1 by 2x-1.
Step 1.2.2.5.1
Set up the polynomials to be divided. If there is not a term for every exponent, insert one with a value of 0.
2x | - | 1 | 4x3 | - | 6x2 | + | 0x | + | 1 |
Step 1.2.2.5.2
Divide the highest order term in the dividend 4x3 by the highest order term in divisor 2x.
2x2 | |||||||||||
2x | - | 1 | 4x3 | - | 6x2 | + | 0x | + | 1 |
Step 1.2.2.5.3
Multiply the new quotient term by the divisor.
2x2 | |||||||||||
2x | - | 1 | 4x3 | - | 6x2 | + | 0x | + | 1 | ||
+ | 4x3 | - | 2x2 |
Step 1.2.2.5.4
The expression needs to be subtracted from the dividend, so change all the signs in 4x3-2x2
2x2 | |||||||||||
2x | - | 1 | 4x3 | - | 6x2 | + | 0x | + | 1 | ||
- | 4x3 | + | 2x2 |
Step 1.2.2.5.5
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
2x2 | |||||||||||
2x | - | 1 | 4x3 | - | 6x2 | + | 0x | + | 1 | ||
- | 4x3 | + | 2x2 | ||||||||
- | 4x2 |
Step 1.2.2.5.6
Pull the next terms from the original dividend down into the current dividend.
2x2 | |||||||||||
2x | - | 1 | 4x3 | - | 6x2 | + | 0x | + | 1 | ||
- | 4x3 | + | 2x2 | ||||||||
- | 4x2 | + | 0x |
Step 1.2.2.5.7
Divide the highest order term in the dividend -4x2 by the highest order term in divisor 2x.
2x2 | - | 2x | |||||||||
2x | - | 1 | 4x3 | - | 6x2 | + | 0x | + | 1 | ||
- | 4x3 | + | 2x2 | ||||||||
- | 4x2 | + | 0x |
Step 1.2.2.5.8
Multiply the new quotient term by the divisor.
2x2 | - | 2x | |||||||||
2x | - | 1 | 4x3 | - | 6x2 | + | 0x | + | 1 | ||
- | 4x3 | + | 2x2 | ||||||||
- | 4x2 | + | 0x | ||||||||
- | 4x2 | + | 2x |
Step 1.2.2.5.9
The expression needs to be subtracted from the dividend, so change all the signs in -4x2+2x
2x2 | - | 2x | |||||||||
2x | - | 1 | 4x3 | - | 6x2 | + | 0x | + | 1 | ||
- | 4x3 | + | 2x2 | ||||||||
- | 4x2 | + | 0x | ||||||||
+ | 4x2 | - | 2x |
Step 1.2.2.5.10
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
2x2 | - | 2x | |||||||||
2x | - | 1 | 4x3 | - | 6x2 | + | 0x | + | 1 | ||
- | 4x3 | + | 2x2 | ||||||||
- | 4x2 | + | 0x | ||||||||
+ | 4x2 | - | 2x | ||||||||
- | 2x |
Step 1.2.2.5.11
Pull the next terms from the original dividend down into the current dividend.
2x2 | - | 2x | |||||||||
2x | - | 1 | 4x3 | - | 6x2 | + | 0x | + | 1 | ||
- | 4x3 | + | 2x2 | ||||||||
- | 4x2 | + | 0x | ||||||||
+ | 4x2 | - | 2x | ||||||||
- | 2x | + | 1 |
Step 1.2.2.5.12
Divide the highest order term in the dividend -2x by the highest order term in divisor 2x.
2x2 | - | 2x | - | 1 | |||||||
2x | - | 1 | 4x3 | - | 6x2 | + | 0x | + | 1 | ||
- | 4x3 | + | 2x2 | ||||||||
- | 4x2 | + | 0x | ||||||||
+ | 4x2 | - | 2x | ||||||||
- | 2x | + | 1 |
Step 1.2.2.5.13
Multiply the new quotient term by the divisor.
2x2 | - | 2x | - | 1 | |||||||
2x | - | 1 | 4x3 | - | 6x2 | + | 0x | + | 1 | ||
- | 4x3 | + | 2x2 | ||||||||
- | 4x2 | + | 0x | ||||||||
+ | 4x2 | - | 2x | ||||||||
- | 2x | + | 1 | ||||||||
- | 2x | + | 1 |
Step 1.2.2.5.14
The expression needs to be subtracted from the dividend, so change all the signs in -2x+1
2x2 | - | 2x | - | 1 | |||||||
2x | - | 1 | 4x3 | - | 6x2 | + | 0x | + | 1 | ||
- | 4x3 | + | 2x2 | ||||||||
- | 4x2 | + | 0x | ||||||||
+ | 4x2 | - | 2x | ||||||||
- | 2x | + | 1 | ||||||||
+ | 2x | - | 1 |
Step 1.2.2.5.15
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
2x2 | - | 2x | - | 1 | |||||||
2x | - | 1 | 4x3 | - | 6x2 | + | 0x | + | 1 | ||
- | 4x3 | + | 2x2 | ||||||||
- | 4x2 | + | 0x | ||||||||
+ | 4x2 | - | 2x | ||||||||
- | 2x | + | 1 | ||||||||
+ | 2x | - | 1 | ||||||||
0 |
Step 1.2.2.5.16
Since the remander is 0, the final answer is the quotient.
2x2-2x-1
2x2-2x-1
Step 1.2.2.6
Write 4x3-6x2+1 as a set of factors.
(2x-1)(2x2-2x-1)=0
(2x-1)(2x2-2x-1)=0
Step 1.2.3
If any individual factor on the left side of the equation is equal to 0, the entire expression will be equal to 0.
2x-1=0
2x2-2x-1=0
Step 1.2.4
Set 2x-1 equal to 0 and solve for x.
Step 1.2.4.1
Set 2x-1 equal to 0.
2x-1=0
Step 1.2.4.2
Solve 2x-1=0 for x.
Step 1.2.4.2.1
Add 1 to both sides of the equation.
2x=1
Step 1.2.4.2.2
Divide each term in 2x=1 by 2 and simplify.
Step 1.2.4.2.2.1
Divide each term in 2x=1 by 2.
2x2=12
Step 1.2.4.2.2.2
Simplify the left side.
Step 1.2.4.2.2.2.1
Cancel the common factor of 2.
Step 1.2.4.2.2.2.1.1
Cancel the common factor.
2x2=12
Step 1.2.4.2.2.2.1.2
Divide x by 1.
x=12
x=12
x=12
x=12
x=12
x=12
Step 1.2.5
Set 2x2-2x-1 equal to 0 and solve for x.
Step 1.2.5.1
Set 2x2-2x-1 equal to 0.
2x2-2x-1=0
Step 1.2.5.2
Solve 2x2-2x-1=0 for x.
Step 1.2.5.2.1
Use the quadratic formula to find the solutions.
-b±√b2-4(ac)2a
Step 1.2.5.2.2
Substitute the values a=2, b=-2, and c=-1 into the quadratic formula and solve for x.
2±√(-2)2-4⋅(2⋅-1)2⋅2
Step 1.2.5.2.3
Simplify.
Step 1.2.5.2.3.1
Simplify the numerator.
Step 1.2.5.2.3.1.1
Raise -2 to the power of 2.
x=2±√4-4⋅2⋅-12⋅2
Step 1.2.5.2.3.1.2
Multiply -4⋅2⋅-1.
Step 1.2.5.2.3.1.2.1
Multiply -4 by 2.
x=2±√4-8⋅-12⋅2
Step 1.2.5.2.3.1.2.2
Multiply -8 by -1.
x=2±√4+82⋅2
x=2±√4+82⋅2
Step 1.2.5.2.3.1.3
Add 4 and 8.
x=2±√122⋅2
Step 1.2.5.2.3.1.4
Rewrite 12 as 22⋅3.
Step 1.2.5.2.3.1.4.1
Factor 4 out of 12.
x=2±√4(3)2⋅2
Step 1.2.5.2.3.1.4.2
Rewrite 4 as 22.
x=2±√22⋅32⋅2
x=2±√22⋅32⋅2
Step 1.2.5.2.3.1.5
Pull terms out from under the radical.
x=2±2√32⋅2
x=2±2√32⋅2
Step 1.2.5.2.3.2
Multiply 2 by 2.
x=2±2√34
Step 1.2.5.2.3.3
Simplify 2±2√34.
x=1±√32
x=1±√32
Step 1.2.5.2.4
Simplify the expression to solve for the + portion of the ±.
Step 1.2.5.2.4.1
Simplify the numerator.
Step 1.2.5.2.4.1.1
Raise -2 to the power of 2.
x=2±√4-4⋅2⋅-12⋅2
Step 1.2.5.2.4.1.2
Multiply -4⋅2⋅-1.
Step 1.2.5.2.4.1.2.1
Multiply -4 by 2.
x=2±√4-8⋅-12⋅2
Step 1.2.5.2.4.1.2.2
Multiply -8 by -1.
x=2±√4+82⋅2
x=2±√4+82⋅2
Step 1.2.5.2.4.1.3
Add 4 and 8.
x=2±√122⋅2
Step 1.2.5.2.4.1.4
Rewrite 12 as 22⋅3.
Step 1.2.5.2.4.1.4.1
Factor 4 out of 12.
x=2±√4(3)2⋅2
Step 1.2.5.2.4.1.4.2
Rewrite 4 as 22.
x=2±√22⋅32⋅2
x=2±√22⋅32⋅2
Step 1.2.5.2.4.1.5
Pull terms out from under the radical.
x=2±2√32⋅2
x=2±2√32⋅2
Step 1.2.5.2.4.2
Multiply 2 by 2.
x=2±2√34
Step 1.2.5.2.4.3
Simplify 2±2√34.
x=1±√32
Step 1.2.5.2.4.4
Change the ± to +.
x=1+√32
x=1+√32
Step 1.2.5.2.5
Simplify the expression to solve for the - portion of the ±.
Step 1.2.5.2.5.1
Simplify the numerator.
Step 1.2.5.2.5.1.1
Raise -2 to the power of 2.
x=2±√4-4⋅2⋅-12⋅2
Step 1.2.5.2.5.1.2
Multiply -4⋅2⋅-1.
Step 1.2.5.2.5.1.2.1
Multiply -4 by 2.
x=2±√4-8⋅-12⋅2
Step 1.2.5.2.5.1.2.2
Multiply -8 by -1.
x=2±√4+82⋅2
x=2±√4+82⋅2
Step 1.2.5.2.5.1.3
Add 4 and 8.
x=2±√122⋅2
Step 1.2.5.2.5.1.4
Rewrite 12 as 22⋅3.
Step 1.2.5.2.5.1.4.1
Factor 4 out of 12.
x=2±√4(3)2⋅2
Step 1.2.5.2.5.1.4.2
Rewrite 4 as 22.
x=2±√22⋅32⋅2
x=2±√22⋅32⋅2
Step 1.2.5.2.5.1.5
Pull terms out from under the radical.
x=2±2√32⋅2
x=2±2√32⋅2
Step 1.2.5.2.5.2
Multiply 2 by 2.
x=2±2√34
Step 1.2.5.2.5.3
Simplify 2±2√34.
x=1±√32
Step 1.2.5.2.5.4
Change the ± to -.
x=1-√32
x=1-√32
Step 1.2.5.2.6
The final answer is the combination of both solutions.
x=1+√32,1-√32
x=1+√32,1-√32
x=1+√32,1-√32
Step 1.2.6
The final solution is all the values that make (2x-1)(2x2-2x-1)=0 true.
x=12,1+√32,1-√32
x=12,1+√32,1-√32
Step 1.3
Find the values where the derivative is undefined.
Step 1.3.1
The domain of the expression is all real numbers except where the expression is undefined. In this case, there is no real number that makes the expression undefined.
Step 1.4
Evaluate x4-2x3+x+1 at each x value where the derivative is 0 or undefined.
Step 1.4.1
Evaluate at x=12.
Step 1.4.1.1
Substitute 12 for x.
(12)4-2(12)3+12+1
Step 1.4.1.2
Simplify.
Step 1.4.1.2.1
Remove parentheses.
(12)4-2(12)3+12+1
Step 1.4.1.2.2
Simplify each term.
Step 1.4.1.2.2.1
Apply the product rule to 12.
1424-2(12)3+12+1
Step 1.4.1.2.2.2
One to any power is one.
124-2(12)3+12+1
Step 1.4.1.2.2.3
Raise 2 to the power of 4.
116-2(12)3+12+1
Step 1.4.1.2.2.4
Apply the product rule to 12.
116-21323+12+1
Step 1.4.1.2.2.5
One to any power is one.
116-2123+12+1
Step 1.4.1.2.2.6
Raise 2 to the power of 3.
116-2(18)+12+1
Step 1.4.1.2.2.7
Cancel the common factor of 2.
Step 1.4.1.2.2.7.1
Factor 2 out of -2.
116+2(-1)18+12+1
Step 1.4.1.2.2.7.2
Factor 2 out of 8.
116+2⋅-112⋅4+12+1
Step 1.4.1.2.2.7.3
Cancel the common factor.
116+2⋅-112⋅4+12+1
Step 1.4.1.2.2.7.4
Rewrite the expression.
116-1(14)+12+1
116-1(14)+12+1
Step 1.4.1.2.2.8
Rewrite -1(14) as -(14).
116-14+12+1
116-14+12+1
Step 1.4.1.2.3
Find the common denominator.
Step 1.4.1.2.3.1
Multiply 14 by 44.
116-(14⋅44)+12+1
Step 1.4.1.2.3.2
Multiply 14 by 44.
116-44⋅4+12+1
Step 1.4.1.2.3.3
Multiply 12 by 88.
116-44⋅4+12⋅88+1
Step 1.4.1.2.3.4
Multiply 12 by 88.
116-44⋅4+82⋅8+1
Step 1.4.1.2.3.5
Write 1 as a fraction with denominator 1.
116-44⋅4+82⋅8+11
Step 1.4.1.2.3.6
Multiply 11 by 1616.
116-44⋅4+82⋅8+11⋅1616
Step 1.4.1.2.3.7
Multiply 11 by 1616.
116-44⋅4+82⋅8+1616
Step 1.4.1.2.3.8
Multiply 4 by 4.
116-416+82⋅8+1616
Step 1.4.1.2.3.9
Multiply 2 by 8.
116-416+816+1616
116-416+816+1616
Step 1.4.1.2.4
Combine the numerators over the common denominator.
1-4+8+1616
Step 1.4.1.2.5
Simplify by adding and subtracting.
Step 1.4.1.2.5.1
Subtract 4 from 1.
-3+8+1616
Step 1.4.1.2.5.2
Add -3 and 8.
5+1616
Step 1.4.1.2.5.3
Add 5 and 16.
2116
2116
2116
2116
Step 1.4.2
Evaluate at x=1+√32.
Step 1.4.2.1
Substitute 1+√32 for x.
(1+√32)4-2(1+√32)3+1+√32+1
Step 1.4.2.2
Simplify.
Step 1.4.2.2.1
Remove parentheses.
(1+√32)4-2(1+√32)3+1+√32+1
Step 1.4.2.2.2
Find the common denominator.
Step 1.4.2.2.2.1
Write (1+√32)4 as a fraction with denominator 1.
(1+√32)41-2(1+√32)3+1+√32+1
Step 1.4.2.2.2.2
Multiply (1+√32)41 by 22.
(1+√32)41⋅22-2(1+√32)3+1+√32+1
Step 1.4.2.2.2.3
Multiply (1+√32)41 by 22.
(1+√32)4⋅22-2(1+√32)3+1+√32+1
Step 1.4.2.2.2.4
Write -2(1+√32)3 as a fraction with denominator 1.
(1+√32)4⋅22+-2(1+√32)31+1+√32+1
Step 1.4.2.2.2.5
Multiply -2(1+√32)31 by 22.
(1+√32)4⋅22+-2(1+√32)31⋅22+1+√32+1
Step 1.4.2.2.2.6
Multiply -2(1+√32)31 by 22.
(1+√32)4⋅22+-2(1+√32)3⋅22+1+√32+1
Step 1.4.2.2.2.7
Write 1 as a fraction with denominator 1.
(1+√32)4⋅22+-2(1+√32)3⋅22+1+√32+11
Step 1.4.2.2.2.8
Multiply 11 by 22.
(1+√32)4⋅22+-2(1+√32)3⋅22+1+√32+11⋅22
Step 1.4.2.2.2.9
Multiply 11 by 22.
(1+√32)4⋅22+-2(1+√32)3⋅22+1+√32+22
(1+√32)4⋅22+-2(1+√32)3⋅22+1+√32+22
Step 1.4.2.2.3
Combine the numerators over the common denominator.
(1+√32)4⋅2-2(1+√32)3⋅2+1+√3+22
Step 1.4.2.2.4
Simplify each term.
Step 1.4.2.2.4.1
Apply the product rule to 1+√32.
(1+√3)424⋅2-2(1+√32)3⋅2+1+√3+22
Step 1.4.2.2.4.2
Raise 2 to the power of 4.
(1+√3)416⋅2-2(1+√32)3⋅2+1+√3+22
Step 1.4.2.2.4.3
Cancel the common factor of 2.
Step 1.4.2.2.4.3.1
Factor 2 out of 16.
(1+√3)42(8)⋅2-2(1+√32)3⋅2+1+√3+22
Step 1.4.2.2.4.3.2
Cancel the common factor.
(1+√3)42⋅8⋅2-2(1+√32)3⋅2+1+√3+22
Step 1.4.2.2.4.3.3
Rewrite the expression.
(1+√3)48-2(1+√32)3⋅2+1+√3+22
(1+√3)48-2(1+√32)3⋅2+1+√3+22
Step 1.4.2.2.4.4
Use the Binomial Theorem.
14+4⋅13√3+6⋅12√32+4⋅1√33+√348-2(1+√32)3⋅2+1+√3+22
Step 1.4.2.2.4.5
Simplify each term.
Step 1.4.2.2.4.5.1
One to any power is one.
1+4⋅13√3+6⋅12√32+4⋅1√33+√348-2(1+√32)3⋅2+1+√3+22
Step 1.4.2.2.4.5.2
One to any power is one.
1+4⋅1√3+6⋅12√32+4⋅1√33+√348-2(1+√32)3⋅2+1+√3+22
Step 1.4.2.2.4.5.3
Multiply 4 by 1.
1+4√3+6⋅12√32+4⋅1√33+√348-2(1+√32)3⋅2+1+√3+22
Step 1.4.2.2.4.5.4
One to any power is one.
1+4√3+6⋅1√32+4⋅1√33+√348-2(1+√32)3⋅2+1+√3+22
Step 1.4.2.2.4.5.5
Multiply 6 by 1.
1+4√3+6√32+4⋅1√33+√348-2(1+√32)3⋅2+1+√3+22
Step 1.4.2.2.4.5.6
Rewrite √32 as 3.
Step 1.4.2.2.4.5.6.1
Use n√ax=axn to rewrite √3 as 312.
1+4√3+6(312)2+4⋅1√33+√348-2(1+√32)3⋅2+1+√3+22
Step 1.4.2.2.4.5.6.2
Apply the power rule and multiply exponents, (am)n=amn.
1+4√3+6⋅312⋅2+4⋅1√33+√348-2(1+√32)3⋅2+1+√3+22
Step 1.4.2.2.4.5.6.3
Combine 12 and 2.
1+4√3+6⋅322+4⋅1√33+√348-2(1+√32)3⋅2+1+√3+22
Step 1.4.2.2.4.5.6.4
Cancel the common factor of 2.
Step 1.4.2.2.4.5.6.4.1
Cancel the common factor.
1+4√3+6⋅322+4⋅1√33+√348-2(1+√32)3⋅2+1+√3+22
Step 1.4.2.2.4.5.6.4.2
Rewrite the expression.
1+4√3+6⋅31+4⋅1√33+√348-2(1+√32)3⋅2+1+√3+22
1+4√3+6⋅31+4⋅1√33+√348-2(1+√32)3⋅2+1+√3+22
Step 1.4.2.2.4.5.6.5
Evaluate the exponent.
1+4√3+6⋅3+4⋅1√33+√348-2(1+√32)3⋅2+1+√3+22
1+4√3+6⋅3+4⋅1√33+√348-2(1+√32)3⋅2+1+√3+22
Step 1.4.2.2.4.5.7
Multiply 6 by 3.
1+4√3+18+4⋅1√33+√348-2(1+√32)3⋅2+1+√3+22
Step 1.4.2.2.4.5.8
Multiply 4 by 1.
1+4√3+18+4√33+√348-2(1+√32)3⋅2+1+√3+22
Step 1.4.2.2.4.5.9
Rewrite √33 as √33.
1+4√3+18+4√33+√348-2(1+√32)3⋅2+1+√3+22
Step 1.4.2.2.4.5.10
Raise 3 to the power of 3.
1+4√3+18+4√27+√348-2(1+√32)3⋅2+1+√3+22
Step 1.4.2.2.4.5.11
Rewrite 27 as 32⋅3.
Step 1.4.2.2.4.5.11.1
Factor 9 out of 27.
1+4√3+18+4√9(3)+√348-2(1+√32)3⋅2+1+√3+22
Step 1.4.2.2.4.5.11.2
Rewrite 9 as 32.
1+4√3+18+4√32⋅3+√348-2(1+√32)3⋅2+1+√3+22
1+4√3+18+4√32⋅3+√348-2(1+√32)3⋅2+1+√3+22
Step 1.4.2.2.4.5.12
Pull terms out from under the radical.
1+4√3+18+4(3√3)+√348-2(1+√32)3⋅2+1+√3+22
Step 1.4.2.2.4.5.13
Multiply 3 by 4.
1+4√3+18+12√3+√348-2(1+√32)3⋅2+1+√3+22
Step 1.4.2.2.4.5.14
Rewrite √34 as 32.
Step 1.4.2.2.4.5.14.1
Use n√ax=axn to rewrite √3 as 312.
1+4√3+18+12√3+(312)48-2(1+√32)3⋅2+1+√3+22
Step 1.4.2.2.4.5.14.2
Apply the power rule and multiply exponents, (am)n=amn.
1+4√3+18+12√3+312⋅48-2(1+√32)3⋅2+1+√3+22
Step 1.4.2.2.4.5.14.3
Combine 12 and 4.
1+4√3+18+12√3+3428-2(1+√32)3⋅2+1+√3+22
Step 1.4.2.2.4.5.14.4
Cancel the common factor of 4 and 2.
Step 1.4.2.2.4.5.14.4.1
Factor 2 out of 4.
1+4√3+18+12√3+32⋅228-2(1+√32)3⋅2+1+√3+22
Step 1.4.2.2.4.5.14.4.2
Cancel the common factors.
Step 1.4.2.2.4.5.14.4.2.1
Factor 2 out of 2.
1+4√3+18+12√3+32⋅22(1)8-2(1+√32)3⋅2+1+√3+22
Step 1.4.2.2.4.5.14.4.2.2
Cancel the common factor.
1+4√3+18+12√3+32⋅22⋅18-2(1+√32)3⋅2+1+√3+22
Step 1.4.2.2.4.5.14.4.2.3
Rewrite the expression.
1+4√3+18+12√3+3218-2(1+√32)3⋅2+1+√3+22
Step 1.4.2.2.4.5.14.4.2.4
Divide 2 by 1.
1+4√3+18+12√3+328-2(1+√32)3⋅2+1+√3+22
1+4√3+18+12√3+328-2(1+√32)3⋅2+1+√3+22
1+4√3+18+12√3+328-2(1+√32)3⋅2+1+√3+22
1+4√3+18+12√3+328-2(1+√32)3⋅2+1+√3+22
Step 1.4.2.2.4.5.15
Raise 3 to the power of 2.
1+4√3+18+12√3+98-2(1+√32)3⋅2+1+√3+22
1+4√3+18+12√3+98-2(1+√32)3⋅2+1+√3+22
Step 1.4.2.2.4.6
Add 1 and 18.
19+4√3+12√3+98-2(1+√32)3⋅2+1+√3+22
Step 1.4.2.2.4.7
Add 19 and 9.
28+4√3+12√38-2(1+√32)3⋅2+1+√3+22
Step 1.4.2.2.4.8
Add 4√3 and 12√3.
28+16√38-2(1+√32)3⋅2+1+√3+22
Step 1.4.2.2.4.9
Cancel the common factor of 28+16√3 and 8.
Step 1.4.2.2.4.9.1
Factor 4 out of 28.
4(7)+16√38-2(1+√32)3⋅2+1+√3+22
Step 1.4.2.2.4.9.2
Factor 4 out of 16√3.
4(7)+4(4√3)8-2(1+√32)3⋅2+1+√3+22
Step 1.4.2.2.4.9.3
Factor 4 out of 4(7)+4(4√3).
4(7+4√3)8-2(1+√32)3⋅2+1+√3+22
Step 1.4.2.2.4.9.4
Cancel the common factors.
Step 1.4.2.2.4.9.4.1
Factor 4 out of 8.
4(7+4√3)4⋅2-2(1+√32)3⋅2+1+√3+22
Step 1.4.2.2.4.9.4.2
Cancel the common factor.
4(7+4√3)4⋅2-2(1+√32)3⋅2+1+√3+22
Step 1.4.2.2.4.9.4.3
Rewrite the expression.
7+4√32-2(1+√32)3⋅2+1+√3+22
7+4√32-2(1+√32)3⋅2+1+√3+22
7+4√32-2(1+√32)3⋅2+1+√3+22
Step 1.4.2.2.4.10
Apply the product rule to 1+√32.
7+4√32-2(1+√3)323⋅2+1+√3+22
Step 1.4.2.2.4.11
Raise 2 to the power of 3.
7+4√32-2(1+√3)38⋅2+1+√3+22
Step 1.4.2.2.4.12
Cancel the common factor of 2.
Step 1.4.2.2.4.12.1
Factor 2 out of -2.
7+4√32+2(-1)(1+√3)38⋅2+1+√3+22
Step 1.4.2.2.4.12.2
Factor 2 out of 8.
7+4√32+2⋅-1(1+√3)32⋅4⋅2+1+√3+22
Step 1.4.2.2.4.12.3
Cancel the common factor.
7+4√32+2⋅-1(1+√3)32⋅4⋅2+1+√3+22
Step 1.4.2.2.4.12.4
Rewrite the expression.
7+4√32-1(1+√3)34⋅2+1+√3+22
7+4√32-1(1+√3)34⋅2+1+√3+22
Step 1.4.2.2.4.13
Use the Binomial Theorem.
7+4√32-113+3⋅12√3+3⋅1√32+√334⋅2+1+√3+22
Step 1.4.2.2.4.14
Simplify each term.
Step 1.4.2.2.4.14.1
One to any power is one.
7+4√32-11+3⋅12√3+3⋅1√32+√334⋅2+1+√3+22
Step 1.4.2.2.4.14.2
One to any power is one.
7+4√32-11+3⋅1√3+3⋅1√32+√334⋅2+1+√3+22
Step 1.4.2.2.4.14.3
Multiply 3 by 1.
7+4√32-11+3√3+3⋅1√32+√334⋅2+1+√3+22
Step 1.4.2.2.4.14.4
Multiply 3 by 1.
7+4√32-11+3√3+3√32+√334⋅2+1+√3+22
Step 1.4.2.2.4.14.5
Rewrite √32 as 3.
Step 1.4.2.2.4.14.5.1
Use n√ax=axn to rewrite √3 as 312.
7+4√32-11+3√3+3(312)2+√334⋅2+1+√3+22
Step 1.4.2.2.4.14.5.2
Apply the power rule and multiply exponents, (am)n=amn.
7+4√32-11+3√3+3⋅312⋅2+√334⋅2+1+√3+22
Step 1.4.2.2.4.14.5.3
Combine 12 and 2.
7+4√32-11+3√3+3⋅322+√334⋅2+1+√3+22
Step 1.4.2.2.4.14.5.4
Cancel the common factor of 2.
Step 1.4.2.2.4.14.5.4.1
Cancel the common factor.
7+4√32-11+3√3+3⋅322+√334⋅2+1+√3+22
Step 1.4.2.2.4.14.5.4.2
Rewrite the expression.
7+4√32-11+3√3+3⋅31+√334⋅2+1+√3+22
7+4√32-11+3√3+3⋅31+√334⋅2+1+√3+22
Step 1.4.2.2.4.14.5.5
Evaluate the exponent.
7+4√32-11+3√3+3⋅3+√334⋅2+1+√3+22
7+4√32-11+3√3+3⋅3+√334⋅2+1+√3+22
Step 1.4.2.2.4.14.6
Multiply 3 by 3.
7+4√32-11+3√3+9+√334⋅2+1+√3+22
Step 1.4.2.2.4.14.7
Rewrite √33 as √33.
7+4√32-11+3√3+9+√334⋅2+1+√3+22
Step 1.4.2.2.4.14.8
Raise 3 to the power of 3.
7+4√32-11+3√3+9+√274⋅2+1+√3+22
Step 1.4.2.2.4.14.9
Rewrite 27 as 32⋅3.
Step 1.4.2.2.4.14.9.1
Factor 9 out of 27.
7+4√32-11+3√3+9+√9(3)4⋅2+1+√3+22
Step 1.4.2.2.4.14.9.2
Rewrite 9 as 32.
7+4√32-11+3√3+9+√32⋅34⋅2+1+√3+22
7+4√32-11+3√3+9+√32⋅34⋅2+1+√3+22
Step 1.4.2.2.4.14.10
Pull terms out from under the radical.
7+4√32-11+3√3+9+3√34⋅2+1+√3+22
7+4√32-11+3√3+9+3√34⋅2+1+√3+22
Step 1.4.2.2.4.15
Add 1 and 9.
7+4√32-110+3√3+3√34⋅2+1+√3+22
Step 1.4.2.2.4.16
Add 3√3 and 3√3.
7+4√32-110+6√34⋅2+1+√3+22
Step 1.4.2.2.4.17
Cancel the common factor of 10+6√3 and 4.
Step 1.4.2.2.4.17.1
Factor 2 out of 10.
7+4√32-12(5)+6√34⋅2+1+√3+22
Step 1.4.2.2.4.17.2
Factor 2 out of 6√3.
7+4√32-12(5)+2(3√3)4⋅2+1+√3+22
Step 1.4.2.2.4.17.3
Factor 2 out of 2(5)+2(3√3).
7+4√32-12(5+3√3)4⋅2+1+√3+22
Step 1.4.2.2.4.17.4
Cancel the common factors.
Step 1.4.2.2.4.17.4.1
Factor 2 out of 4.
7+4√32-12(5+3√3)2⋅2⋅2+1+√3+22
Step 1.4.2.2.4.17.4.2
Cancel the common factor.
7+4√32-12(5+3√3)2⋅2⋅2+1+√3+22
Step 1.4.2.2.4.17.4.3
Rewrite the expression.
7+4√32-15+3√32⋅2+1+√3+22
7+4√32-15+3√32⋅2+1+√3+22
7+4√32-15+3√32⋅2+1+√3+22
Step 1.4.2.2.4.18
Rewrite -15+3√32 as -5+3√32.
7+4√32-5+3√32⋅2+1+√3+22
Step 1.4.2.2.4.19
Cancel the common factor of 2.
Step 1.4.2.2.4.19.1
Move the leading negative in -5+3√32 into the numerator.
7+4√32+-(5+3√3)2⋅2+1+√3+22
Step 1.4.2.2.4.19.2
Cancel the common factor.
7+4√32+-(5+3√3)2⋅2+1+√3+22
Step 1.4.2.2.4.19.3
Rewrite the expression.
7+4√32-(5+3√3)+1+√3+22
7+4√32-(5+3√3)+1+√3+22
Step 1.4.2.2.4.20
Apply the distributive property.
7+4√32-1⋅5-(3√3)+1+√3+22
Step 1.4.2.2.4.21
Multiply -1 by 5.
7+4√32-5-(3√3)+1+√3+22
Step 1.4.2.2.4.22
Multiply 3 by -1.
7+4√32-5-3√3+1+√3+22
7+4√32-5-3√3+1+√3+22
Step 1.4.2.2.5
To write -5 as a fraction with a common denominator, multiply by 22.
7+4√32-5⋅22-3√3+1+√3+22
Step 1.4.2.2.6
Combine -5 and 22.
7+4√32+-5⋅22-3√3+1+√3+22
Step 1.4.2.2.7
Simplify the expression.
Step 1.4.2.2.7.1
Combine the numerators over the common denominator.
7+4√3-5⋅22-3√3+1+√3+22
Step 1.4.2.2.7.2
Multiply -5 by 2.
7+4√3-102-3√3+1+√3+22
Step 1.4.2.2.7.3
Subtract 10 from 7.
-3+4√32-3√3+1+√3+22
-3+4√32-3√3+1+√3+22
Step 1.4.2.2.8
To write -3√3 as a fraction with a common denominator, multiply by 22.
-3+4√32-3√3⋅22+1+√3+22
Step 1.4.2.2.9
Combine fractions.
Step 1.4.2.2.9.1
Combine -3√3 and 22.
-3+4√32+-3√3⋅22+1+√3+22
Step 1.4.2.2.9.2
Combine the numerators over the common denominator.
-3+4√3-3√3⋅22+1+√3+22
-3+4√3-3√3⋅22+1+√3+22
Step 1.4.2.2.10
Simplify the numerator.
Step 1.4.2.2.10.1
Multiply 2 by -3.
-3+4√3-6√32+1+√3+22
Step 1.4.2.2.10.2
Subtract 6√3 from 4√3.
-3-2√32+1+√3+22
-3-2√32+1+√3+22
Step 1.4.2.2.11
Simplify the expression.
Step 1.4.2.2.11.1
Write 1 as a fraction with a common denominator.
-3-2√32+22+√3+22
Step 1.4.2.2.11.2
Combine the numerators over the common denominator.
-3-2√3+22+√3+22
Step 1.4.2.2.11.3
Add -3 and 2.
-1-2√32+√3+22
-1-2√32+√3+22
Step 1.4.2.2.12
To write √3 as a fraction with a common denominator, multiply by 22.
-1-2√32+√3⋅22+22
Step 1.4.2.2.13
Combine √3 and 22.
-1-2√32+√3⋅22+22
Step 1.4.2.2.14
Simplify the expression.
Step 1.4.2.2.14.1
Combine the numerators over the common denominator.
-1-2√3+√3⋅22+22
Step 1.4.2.2.14.2
Reorder the factors of √3⋅2.
-1-2√3+2√32+22
-1-2√3+2√32+22
Step 1.4.2.2.15
Add -2√3 and 2√3.
-1+02+22
Step 1.4.2.2.16
Simplify the expression.
Step 1.4.2.2.16.1
Add -1 and 0.
-12+22
Step 1.4.2.2.16.2
Move the negative in front of the fraction.
-12+22
-12+22
Step 1.4.2.2.17
To write 2 as a fraction with a common denominator, multiply by 22.
-12+2⋅222
Step 1.4.2.2.18
Combine 2 and 22.
-12+2⋅222
Step 1.4.2.2.19
Combine the numerators over the common denominator.
-1+2⋅222
Step 1.4.2.2.20
Simplify the numerator.
Step 1.4.2.2.20.1
Multiply 2 by 2.
-1+422
Step 1.4.2.2.20.2
Add -1 and 4.
322
322
Step 1.4.2.2.21
Multiply the numerator by the reciprocal of the denominator.
32⋅12
Step 1.4.2.2.22
Multiply 32⋅12.
Step 1.4.2.2.22.1
Multiply 32 by 12.
32⋅2
Step 1.4.2.2.22.2
Multiply 2 by 2.
34
34
34
34
Step 1.4.3
Evaluate at x=1-√32.
Step 1.4.3.1
Substitute 1-√32 for x.
(1-√32)4-2(1-√32)3+1-√32+1
Step 1.4.3.2
Simplify.
Step 1.4.3.2.1
Remove parentheses.
(1-√32)4-2(1-√32)3+1-√32+1
Step 1.4.3.2.2
Find the common denominator.
Step 1.4.3.2.2.1
Write (1-√32)4 as a fraction with denominator 1.
(1-√32)41-2(1-√32)3+1-√32+1
Step 1.4.3.2.2.2
Multiply (1-√32)41 by 22.
(1-√32)41⋅22-2(1-√32)3+1-√32+1
Step 1.4.3.2.2.3
Multiply (1-√32)41 by 22.
(1-√32)4⋅22-2(1-√32)3+1-√32+1
Step 1.4.3.2.2.4
Write -2(1-√32)3 as a fraction with denominator 1.
(1-√32)4⋅22+-2(1-√32)31+1-√32+1
Step 1.4.3.2.2.5
Multiply -2(1-√32)31 by 22.
(1-√32)4⋅22+-2(1-√32)31⋅22+1-√32+1
Step 1.4.3.2.2.6
Multiply -2(1-√32)31 by 22.
(1-√32)4⋅22+-2(1-√32)3⋅22+1-√32+1
Step 1.4.3.2.2.7
Write as a fraction with denominator .
Step 1.4.3.2.2.8
Multiply by .
Step 1.4.3.2.2.9
Multiply by .
Step 1.4.3.2.3
Combine the numerators over the common denominator.
Step 1.4.3.2.4
Simplify each term.
Step 1.4.3.2.4.1
Apply the product rule to .
Step 1.4.3.2.4.2
Raise to the power of .
Step 1.4.3.2.4.3
Cancel the common factor of .
Step 1.4.3.2.4.3.1
Factor out of .
Step 1.4.3.2.4.3.2
Cancel the common factor.
Step 1.4.3.2.4.3.3
Rewrite the expression.
Step 1.4.3.2.4.4
Use the Binomial Theorem.
Step 1.4.3.2.4.5
Simplify each term.
Step 1.4.3.2.4.5.1
One to any power is one.
Step 1.4.3.2.4.5.2
One to any power is one.
Step 1.4.3.2.4.5.3
Multiply by .
Step 1.4.3.2.4.5.4
Multiply by .
Step 1.4.3.2.4.5.5
One to any power is one.
Step 1.4.3.2.4.5.6
Multiply by .
Step 1.4.3.2.4.5.7
Apply the product rule to .
Step 1.4.3.2.4.5.8
Raise to the power of .
Step 1.4.3.2.4.5.9
Multiply by .
Step 1.4.3.2.4.5.10
Rewrite as .
Step 1.4.3.2.4.5.10.1
Use to rewrite as .
Step 1.4.3.2.4.5.10.2
Apply the power rule and multiply exponents, .
Step 1.4.3.2.4.5.10.3
Combine and .
Step 1.4.3.2.4.5.10.4
Cancel the common factor of .
Step 1.4.3.2.4.5.10.4.1
Cancel the common factor.
Step 1.4.3.2.4.5.10.4.2
Rewrite the expression.
Step 1.4.3.2.4.5.10.5
Evaluate the exponent.
Step 1.4.3.2.4.5.11
Multiply by .
Step 1.4.3.2.4.5.12
Multiply by .
Step 1.4.3.2.4.5.13
Apply the product rule to .
Step 1.4.3.2.4.5.14
Raise to the power of .
Step 1.4.3.2.4.5.15
Rewrite as .
Step 1.4.3.2.4.5.16
Raise to the power of .
Step 1.4.3.2.4.5.17
Rewrite as .
Step 1.4.3.2.4.5.17.1
Factor out of .
Step 1.4.3.2.4.5.17.2
Rewrite as .
Step 1.4.3.2.4.5.18
Pull terms out from under the radical.
Step 1.4.3.2.4.5.19
Multiply by .
Step 1.4.3.2.4.5.20
Multiply by .
Step 1.4.3.2.4.5.21
Apply the product rule to .
Step 1.4.3.2.4.5.22
Raise to the power of .
Step 1.4.3.2.4.5.23
Multiply by .
Step 1.4.3.2.4.5.24
Rewrite as .
Step 1.4.3.2.4.5.24.1
Use to rewrite as .
Step 1.4.3.2.4.5.24.2
Apply the power rule and multiply exponents, .
Step 1.4.3.2.4.5.24.3
Combine and .
Step 1.4.3.2.4.5.24.4
Cancel the common factor of and .
Step 1.4.3.2.4.5.24.4.1
Factor out of .
Step 1.4.3.2.4.5.24.4.2
Cancel the common factors.
Step 1.4.3.2.4.5.24.4.2.1
Factor out of .
Step 1.4.3.2.4.5.24.4.2.2
Cancel the common factor.
Step 1.4.3.2.4.5.24.4.2.3
Rewrite the expression.
Step 1.4.3.2.4.5.24.4.2.4
Divide by .
Step 1.4.3.2.4.5.25
Raise to the power of .
Step 1.4.3.2.4.6
Add and .
Step 1.4.3.2.4.7
Add and .
Step 1.4.3.2.4.8
Subtract from .
Step 1.4.3.2.4.9
Cancel the common factor of and .
Step 1.4.3.2.4.9.1
Factor out of .
Step 1.4.3.2.4.9.2
Factor out of .
Step 1.4.3.2.4.9.3
Factor out of .
Step 1.4.3.2.4.9.4
Cancel the common factors.
Step 1.4.3.2.4.9.4.1
Factor out of .
Step 1.4.3.2.4.9.4.2
Cancel the common factor.
Step 1.4.3.2.4.9.4.3
Rewrite the expression.
Step 1.4.3.2.4.10
Apply the product rule to .
Step 1.4.3.2.4.11
Raise to the power of .
Step 1.4.3.2.4.12
Cancel the common factor of .
Step 1.4.3.2.4.12.1
Factor out of .
Step 1.4.3.2.4.12.2
Factor out of .
Step 1.4.3.2.4.12.3
Cancel the common factor.
Step 1.4.3.2.4.12.4
Rewrite the expression.
Step 1.4.3.2.4.13
Use the Binomial Theorem.
Step 1.4.3.2.4.14
Simplify each term.
Step 1.4.3.2.4.14.1
One to any power is one.
Step 1.4.3.2.4.14.2
One to any power is one.
Step 1.4.3.2.4.14.3
Multiply by .
Step 1.4.3.2.4.14.4
Multiply by .
Step 1.4.3.2.4.14.5
Multiply by .
Step 1.4.3.2.4.14.6
Apply the product rule to .
Step 1.4.3.2.4.14.7
Raise to the power of .
Step 1.4.3.2.4.14.8
Multiply by .
Step 1.4.3.2.4.14.9
Rewrite as .
Step 1.4.3.2.4.14.9.1
Use to rewrite as .
Step 1.4.3.2.4.14.9.2
Apply the power rule and multiply exponents, .
Step 1.4.3.2.4.14.9.3
Combine and .
Step 1.4.3.2.4.14.9.4
Cancel the common factor of .
Step 1.4.3.2.4.14.9.4.1
Cancel the common factor.
Step 1.4.3.2.4.14.9.4.2
Rewrite the expression.
Step 1.4.3.2.4.14.9.5
Evaluate the exponent.
Step 1.4.3.2.4.14.10
Multiply by .
Step 1.4.3.2.4.14.11
Apply the product rule to .
Step 1.4.3.2.4.14.12
Raise to the power of .
Step 1.4.3.2.4.14.13
Rewrite as .
Step 1.4.3.2.4.14.14
Raise to the power of .
Step 1.4.3.2.4.14.15
Rewrite as .
Step 1.4.3.2.4.14.15.1
Factor out of .
Step 1.4.3.2.4.14.15.2
Rewrite as .
Step 1.4.3.2.4.14.16
Pull terms out from under the radical.
Step 1.4.3.2.4.14.17
Multiply by .
Step 1.4.3.2.4.15
Add and .
Step 1.4.3.2.4.16
Subtract from .
Step 1.4.3.2.4.17
Cancel the common factor of and .
Step 1.4.3.2.4.17.1
Factor out of .
Step 1.4.3.2.4.17.2
Factor out of .
Step 1.4.3.2.4.17.3
Factor out of .
Step 1.4.3.2.4.17.4
Cancel the common factors.
Step 1.4.3.2.4.17.4.1
Factor out of .
Step 1.4.3.2.4.17.4.2
Cancel the common factor.
Step 1.4.3.2.4.17.4.3
Rewrite the expression.
Step 1.4.3.2.4.18
Rewrite as .
Step 1.4.3.2.4.19
Cancel the common factor of .
Step 1.4.3.2.4.19.1
Move the leading negative in into the numerator.
Step 1.4.3.2.4.19.2
Cancel the common factor.
Step 1.4.3.2.4.19.3
Rewrite the expression.
Step 1.4.3.2.4.20
Apply the distributive property.
Step 1.4.3.2.4.21
Multiply by .
Step 1.4.3.2.4.22
Multiply by .
Step 1.4.3.2.5
To write as a fraction with a common denominator, multiply by .
Step 1.4.3.2.6
Combine and .
Step 1.4.3.2.7
Simplify the expression.
Step 1.4.3.2.7.1
Combine the numerators over the common denominator.
Step 1.4.3.2.7.2
Multiply by .
Step 1.4.3.2.7.3
Subtract from .
Step 1.4.3.2.8
To write as a fraction with a common denominator, multiply by .
Step 1.4.3.2.9
Combine fractions.
Step 1.4.3.2.9.1
Combine and .
Step 1.4.3.2.9.2
Combine the numerators over the common denominator.
Step 1.4.3.2.10
Simplify the numerator.
Step 1.4.3.2.10.1
Multiply by .
Step 1.4.3.2.10.2
Add and .
Step 1.4.3.2.11
Simplify the expression.
Step 1.4.3.2.11.1
Write as a fraction with a common denominator.
Step 1.4.3.2.11.2
Combine the numerators over the common denominator.
Step 1.4.3.2.11.3
Add and .
Step 1.4.3.2.12
To write as a fraction with a common denominator, multiply by .
Step 1.4.3.2.13
Combine fractions.
Step 1.4.3.2.13.1
Combine and .
Step 1.4.3.2.13.2
Combine the numerators over the common denominator.
Step 1.4.3.2.14
Simplify each term.
Step 1.4.3.2.14.1
Simplify the numerator.
Step 1.4.3.2.14.1.1
Multiply by .
Step 1.4.3.2.14.1.2
Subtract from .
Step 1.4.3.2.14.1.3
Add and .
Step 1.4.3.2.14.2
Move the negative in front of the fraction.
Step 1.4.3.2.15
To write as a fraction with a common denominator, multiply by .
Step 1.4.3.2.16
Combine and .
Step 1.4.3.2.17
Combine the numerators over the common denominator.
Step 1.4.3.2.18
Simplify the numerator.
Step 1.4.3.2.18.1
Multiply by .
Step 1.4.3.2.18.2
Add and .
Step 1.4.3.2.19
Multiply the numerator by the reciprocal of the denominator.
Step 1.4.3.2.20
Multiply .
Step 1.4.3.2.20.1
Multiply by .
Step 1.4.3.2.20.2
Multiply by .
Step 1.4.4
List all of the points.
Step 2
Step 2.1
Evaluate at .
Step 2.1.1
Substitute for .
Step 2.1.2
Simplify.
Step 2.1.2.1
Remove parentheses.
Step 2.1.2.2
Simplify each term.
Step 2.1.2.2.1
Raise to the power of .
Step 2.1.2.2.2
Raise to the power of .
Step 2.1.2.2.3
Multiply by .
Step 2.1.2.3
Simplify by adding and subtracting.
Step 2.1.2.3.1
Add and .
Step 2.1.2.3.2
Subtract from .
Step 2.1.2.3.3
Add and .
Step 2.2
Evaluate at .
Step 2.2.1
Substitute for .
Step 2.2.2
Simplify.
Step 2.2.2.1
Remove parentheses.
Step 2.2.2.2
Simplify each term.
Step 2.2.2.2.1
Raise to the power of .
Step 2.2.2.2.2
Raise to the power of .
Step 2.2.2.2.3
Multiply by .
Step 2.2.2.3
Simplify by adding and subtracting.
Step 2.2.2.3.1
Subtract from .
Step 2.2.2.3.2
Add and .
Step 2.2.2.3.3
Add and .
Step 2.3
List all of the points.
Step 3
Compare the values found for each value of in order to determine the absolute maximum and minimum over the given interval. The maximum will occur at the highest value and the minimum will occur at the lowest value.
Absolute Maximum:
Absolute Minimum:
Step 4