Enter a problem...
Calculus Examples
f(x)=4xx2+1f(x)=4xx2+1 on -4−4 , 00
Step 1
Step 1.1
Find the first derivative.
Step 1.1.1
Find the first derivative.
Step 1.1.1.1
Since 44 is constant with respect to xx, the derivative of 4xx2+14xx2+1 with respect to xx is 4ddx[xx2+1]4ddx[xx2+1].
4ddx[xx2+1]4ddx[xx2+1]
Step 1.1.1.2
Differentiate using the Quotient Rule which states that ddx[f(x)g(x)]ddx[f(x)g(x)] is g(x)ddx[f(x)]-f(x)ddx[g(x)]g(x)2g(x)ddx[f(x)]−f(x)ddx[g(x)]g(x)2 where f(x)=xf(x)=x and g(x)=x2+1g(x)=x2+1.
4(x2+1)ddx[x]-xddx[x2+1](x2+1)24(x2+1)ddx[x]−xddx[x2+1](x2+1)2
Step 1.1.1.3
Differentiate.
Step 1.1.1.3.1
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=1.
4(x2+1)⋅1-xddx[x2+1](x2+1)2
Step 1.1.1.3.2
Multiply x2+1 by 1.
4x2+1-xddx[x2+1](x2+1)2
Step 1.1.1.3.3
By the Sum Rule, the derivative of x2+1 with respect to x is ddx[x2]+ddx[1].
4x2+1-x(ddx[x2]+ddx[1])(x2+1)2
Step 1.1.1.3.4
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=2.
4x2+1-x(2x+ddx[1])(x2+1)2
Step 1.1.1.3.5
Since 1 is constant with respect to x, the derivative of 1 with respect to x is 0.
4x2+1-x(2x+0)(x2+1)2
Step 1.1.1.3.6
Simplify the expression.
Step 1.1.1.3.6.1
Add 2x and 0.
4x2+1-x(2x)(x2+1)2
Step 1.1.1.3.6.2
Multiply 2 by -1.
4x2+1-2x⋅x(x2+1)2
4x2+1-2x⋅x(x2+1)2
4x2+1-2x⋅x(x2+1)2
Step 1.1.1.4
Raise x to the power of 1.
4x2+1-2(x1x)(x2+1)2
Step 1.1.1.5
Raise x to the power of 1.
4x2+1-2(x1x1)(x2+1)2
Step 1.1.1.6
Use the power rule aman=am+n to combine exponents.
4x2+1-2x1+1(x2+1)2
Step 1.1.1.7
Add 1 and 1.
4x2+1-2x2(x2+1)2
Step 1.1.1.8
Subtract 2x2 from x2.
4-x2+1(x2+1)2
Step 1.1.1.9
Combine 4 and -x2+1(x2+1)2.
4(-x2+1)(x2+1)2
Step 1.1.1.10
Simplify.
Step 1.1.1.10.1
Apply the distributive property.
4(-x2)+4⋅1(x2+1)2
Step 1.1.1.10.2
Simplify each term.
Step 1.1.1.10.2.1
Multiply -1 by 4.
-4x2+4⋅1(x2+1)2
Step 1.1.1.10.2.2
Multiply 4 by 1.
f′(x)=-4x2+4(x2+1)2
f′(x)=-4x2+4(x2+1)2
f′(x)=-4x2+4(x2+1)2
f′(x)=-4x2+4(x2+1)2
Step 1.1.2
The first derivative of f(x) with respect to x is -4x2+4(x2+1)2.
-4x2+4(x2+1)2
-4x2+4(x2+1)2
Step 1.2
Set the first derivative equal to 0 then solve the equation -4x2+4(x2+1)2=0.
Step 1.2.1
Set the first derivative equal to 0.
-4x2+4(x2+1)2=0
Step 1.2.2
Set the numerator equal to zero.
-4x2+4=0
Step 1.2.3
Solve the equation for x.
Step 1.2.3.1
Subtract 4 from both sides of the equation.
-4x2=-4
Step 1.2.3.2
Divide each term in -4x2=-4 by -4 and simplify.
Step 1.2.3.2.1
Divide each term in -4x2=-4 by -4.
-4x2-4=-4-4
Step 1.2.3.2.2
Simplify the left side.
Step 1.2.3.2.2.1
Cancel the common factor of -4.
Step 1.2.3.2.2.1.1
Cancel the common factor.
-4x2-4=-4-4
Step 1.2.3.2.2.1.2
Divide x2 by 1.
x2=-4-4
x2=-4-4
x2=-4-4
Step 1.2.3.2.3
Simplify the right side.
Step 1.2.3.2.3.1
Divide -4 by -4.
x2=1
x2=1
x2=1
Step 1.2.3.3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
x=±√1
Step 1.2.3.4
Any root of 1 is 1.
x=±1
Step 1.2.3.5
The complete solution is the result of both the positive and negative portions of the solution.
Step 1.2.3.5.1
First, use the positive value of the ± to find the first solution.
x=1
Step 1.2.3.5.2
Next, use the negative value of the ± to find the second solution.
x=-1
Step 1.2.3.5.3
The complete solution is the result of both the positive and negative portions of the solution.
x=1,-1
x=1,-1
x=1,-1
x=1,-1
Step 1.3
Find the values where the derivative is undefined.
Step 1.3.1
The domain of the expression is all real numbers except where the expression is undefined. In this case, there is no real number that makes the expression undefined.
Step 1.4
Evaluate 4xx2+1 at each x value where the derivative is 0 or undefined.
Step 1.4.1
Evaluate at x=1.
Step 1.4.1.1
Substitute 1 for x.
4(1)(1)2+1
Step 1.4.1.2
Simplify.
Step 1.4.1.2.1
Multiply 4 by 1.
412+1
Step 1.4.1.2.2
Simplify the denominator.
Step 1.4.1.2.2.1
One to any power is one.
41+1
Step 1.4.1.2.2.2
Add 1 and 1.
42
42
Step 1.4.1.2.3
Divide 4 by 2.
2
2
2
Step 1.4.2
Evaluate at x=-1.
Step 1.4.2.1
Substitute -1 for x.
4(-1)(-1)2+1
Step 1.4.2.2
Simplify.
Step 1.4.2.2.1
Multiply 4 by -1.
-4(-1)2+1
Step 1.4.2.2.2
Simplify the denominator.
Step 1.4.2.2.2.1
Raise -1 to the power of 2.
-41+1
Step 1.4.2.2.2.2
Add 1 and 1.
-42
-42
Step 1.4.2.2.3
Divide -4 by 2.
-2
-2
-2
Step 1.4.3
List all of the points.
(1,2),(-1,-2)
(1,2),(-1,-2)
(1,2),(-1,-2)
Step 2
Exclude the points that are not on the interval.
(-1,-2)
Step 3
Step 3.1
Evaluate at x=-4.
Step 3.1.1
Substitute -4 for x.
4(-4)(-4)2+1
Step 3.1.2
Simplify.
Step 3.1.2.1
Multiply 4 by -4.
-16(-4)2+1
Step 3.1.2.2
Simplify the denominator.
Step 3.1.2.2.1
Raise -4 to the power of 2.
-1616+1
Step 3.1.2.2.2
Add 16 and 1.
-1617
-1617
Step 3.1.2.3
Move the negative in front of the fraction.
-1617
-1617
-1617
Step 3.2
Evaluate at x=0.
Step 3.2.1
Substitute 0 for x.
4(0)(0)2+1
Step 3.2.2
Simplify.
Step 3.2.2.1
Multiply 4 by 0.
002+1
Step 3.2.2.2
Simplify the denominator.
Step 3.2.2.2.1
Raising 0 to any positive power yields 0.
00+1
Step 3.2.2.2.2
Add 0 and 1.
01
01
Step 3.2.2.3
Divide 0 by 1.
0
0
0
Step 3.3
List all of the points.
(-4,-1617),(0,0)
(-4,-1617),(0,0)
Step 4
Compare the f(x) values found for each value of x in order to determine the absolute maximum and minimum over the given interval. The maximum will occur at the highest f(x) value and the minimum will occur at the lowest f(x) value.
Absolute Maximum: (0,0)
Absolute Minimum: (-1,-2)
Step 5