Enter a problem...
Calculus Examples
f(x)=x3+x2-5x+8f(x)=x3+x2−5x+8 ; (0,∞)
Step 1
Step 1.1
Find the first derivative.
Step 1.1.1
Find the first derivative.
Step 1.1.1.1
Differentiate.
Step 1.1.1.1.1
By the Sum Rule, the derivative of x3+x2-5x+8 with respect to x is ddx[x3]+ddx[x2]+ddx[-5x]+ddx[8].
ddx[x3]+ddx[x2]+ddx[-5x]+ddx[8]
Step 1.1.1.1.2
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=3.
3x2+ddx[x2]+ddx[-5x]+ddx[8]
Step 1.1.1.1.3
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=2.
3x2+2x+ddx[-5x]+ddx[8]
3x2+2x+ddx[-5x]+ddx[8]
Step 1.1.1.2
Evaluate ddx[-5x].
Step 1.1.1.2.1
Since -5 is constant with respect to x, the derivative of -5x with respect to x is -5ddx[x].
3x2+2x-5ddx[x]+ddx[8]
Step 1.1.1.2.2
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=1.
3x2+2x-5⋅1+ddx[8]
Step 1.1.1.2.3
Multiply -5 by 1.
3x2+2x-5+ddx[8]
3x2+2x-5+ddx[8]
Step 1.1.1.3
Differentiate using the Constant Rule.
Step 1.1.1.3.1
Since 8 is constant with respect to x, the derivative of 8 with respect to x is 0.
3x2+2x-5+0
Step 1.1.1.3.2
Add 3x2+2x-5 and 0.
f′(x)=3x2+2x-5
f′(x)=3x2+2x-5
f′(x)=3x2+2x-5
Step 1.1.2
The first derivative of f(x) with respect to x is 3x2+2x-5.
3x2+2x-5
3x2+2x-5
Step 1.2
Set the first derivative equal to 0 then solve the equation 3x2+2x-5=0.
Step 1.2.1
Set the first derivative equal to 0.
3x2+2x-5=0
Step 1.2.2
Factor by grouping.
Step 1.2.2.1
For a polynomial of the form ax2+bx+c, rewrite the middle term as a sum of two terms whose product is a⋅c=3⋅-5=-15 and whose sum is b=2.
Step 1.2.2.1.1
Factor 2 out of 2x.
3x2+2(x)-5=0
Step 1.2.2.1.2
Rewrite 2 as -3 plus 5
3x2+(-3+5)x-5=0
Step 1.2.2.1.3
Apply the distributive property.
3x2-3x+5x-5=0
3x2-3x+5x-5=0
Step 1.2.2.2
Factor out the greatest common factor from each group.
Step 1.2.2.2.1
Group the first two terms and the last two terms.
(3x2-3x)+5x-5=0
Step 1.2.2.2.2
Factor out the greatest common factor (GCF) from each group.
3x(x-1)+5(x-1)=0
3x(x-1)+5(x-1)=0
Step 1.2.2.3
Factor the polynomial by factoring out the greatest common factor, x-1.
(x-1)(3x+5)=0
(x-1)(3x+5)=0
Step 1.2.3
If any individual factor on the left side of the equation is equal to 0, the entire expression will be equal to 0.
x-1=0
3x+5=0
Step 1.2.4
Set x-1 equal to 0 and solve for x.
Step 1.2.4.1
Set x-1 equal to 0.
x-1=0
Step 1.2.4.2
Add 1 to both sides of the equation.
x=1
x=1
Step 1.2.5
Set 3x+5 equal to 0 and solve for x.
Step 1.2.5.1
Set 3x+5 equal to 0.
3x+5=0
Step 1.2.5.2
Solve 3x+5=0 for x.
Step 1.2.5.2.1
Subtract 5 from both sides of the equation.
3x=-5
Step 1.2.5.2.2
Divide each term in 3x=-5 by 3 and simplify.
Step 1.2.5.2.2.1
Divide each term in 3x=-5 by 3.
3x3=-53
Step 1.2.5.2.2.2
Simplify the left side.
Step 1.2.5.2.2.2.1
Cancel the common factor of 3.
Step 1.2.5.2.2.2.1.1
Cancel the common factor.
3x3=-53
Step 1.2.5.2.2.2.1.2
Divide x by 1.
x=-53
x=-53
x=-53
Step 1.2.5.2.2.3
Simplify the right side.
Step 1.2.5.2.2.3.1
Move the negative in front of the fraction.
x=-53
x=-53
x=-53
x=-53
x=-53
Step 1.2.6
The final solution is all the values that make (x-1)(3x+5)=0 true.
x=1,-53
x=1,-53
Step 1.3
Find the values where the derivative is undefined.
Step 1.3.1
The domain of the expression is all real numbers except where the expression is undefined. In this case, there is no real number that makes the expression undefined.
Step 1.4
Evaluate x3+x2-5x+8 at each x value where the derivative is 0 or undefined.
Step 1.4.1
Evaluate at x=1.
Step 1.4.1.1
Substitute 1 for x.
(1)3+(1)2-5⋅1+8
Step 1.4.1.2
Simplify.
Step 1.4.1.2.1
Simplify each term.
Step 1.4.1.2.1.1
One to any power is one.
1+(1)2-5⋅1+8
Step 1.4.1.2.1.2
One to any power is one.
1+1-5⋅1+8
Step 1.4.1.2.1.3
Multiply -5 by 1.
1+1-5+8
1+1-5+8
Step 1.4.1.2.2
Simplify by adding and subtracting.
Step 1.4.1.2.2.1
Add 1 and 1.
2-5+8
Step 1.4.1.2.2.2
Subtract 5 from 2.
-3+8
Step 1.4.1.2.2.3
Add -3 and 8.
5
5
5
5
Step 1.4.2
Evaluate at x=-53.
Step 1.4.2.1
Substitute -53 for x.
(-53)3+(-53)2-5(-53)+8
Step 1.4.2.2
Simplify.
Step 1.4.2.2.1
Simplify each term.
Step 1.4.2.2.1.1
Use the power rule (ab)n=anbn to distribute the exponent.
Step 1.4.2.2.1.1.1
Apply the product rule to -53.
(-1)3(53)3+(-53)2-5(-53)+8
Step 1.4.2.2.1.1.2
Apply the product rule to 53.
(-1)35333+(-53)2-5(-53)+8
(-1)35333+(-53)2-5(-53)+8
Step 1.4.2.2.1.2
Raise -1 to the power of 3.
-5333+(-53)2-5(-53)+8
Step 1.4.2.2.1.3
Raise 5 to the power of 3.
-12533+(-53)2-5(-53)+8
Step 1.4.2.2.1.4
Raise 3 to the power of 3.
-12527+(-53)2-5(-53)+8
Step 1.4.2.2.1.5
Use the power rule (ab)n=anbn to distribute the exponent.
Step 1.4.2.2.1.5.1
Apply the product rule to -53.
-12527+(-1)2(53)2-5(-53)+8
Step 1.4.2.2.1.5.2
Apply the product rule to 53.
-12527+(-1)25232-5(-53)+8
-12527+(-1)25232-5(-53)+8
Step 1.4.2.2.1.6
Raise -1 to the power of 2.
-12527+15232-5(-53)+8
Step 1.4.2.2.1.7
Multiply 5232 by 1.
-12527+5232-5(-53)+8
Step 1.4.2.2.1.8
Raise 5 to the power of 2.
-12527+2532-5(-53)+8
Step 1.4.2.2.1.9
Raise 3 to the power of 2.
-12527+259-5(-53)+8
Step 1.4.2.2.1.10
Multiply -5(-53).
Step 1.4.2.2.1.10.1
Multiply -1 by -5.
-12527+259+5(53)+8
Step 1.4.2.2.1.10.2
Combine 5 and 53.
-12527+259+5⋅53+8
Step 1.4.2.2.1.10.3
Multiply 5 by 5.
-12527+259+253+8
-12527+259+253+8
-12527+259+253+8
Step 1.4.2.2.2
Find the common denominator.
Step 1.4.2.2.2.1
Multiply 259 by 33.
-12527+259⋅33+253+8
Step 1.4.2.2.2.2
Multiply 259 by 33.
-12527+25⋅39⋅3+253+8
Step 1.4.2.2.2.3
Multiply 253 by 99.
-12527+25⋅39⋅3+253⋅99+8
Step 1.4.2.2.2.4
Multiply 253 by 99.
-12527+25⋅39⋅3+25⋅93⋅9+8
Step 1.4.2.2.2.5
Write 8 as a fraction with denominator 1.
-12527+25⋅39⋅3+25⋅93⋅9+81
Step 1.4.2.2.2.6
Multiply 81 by 2727.
-12527+25⋅39⋅3+25⋅93⋅9+81⋅2727
Step 1.4.2.2.2.7
Multiply 81 by 2727.
-12527+25⋅39⋅3+25⋅93⋅9+8⋅2727
Step 1.4.2.2.2.8
Reorder the factors of 9⋅3.
-12527+25⋅33⋅9+25⋅93⋅9+8⋅2727
Step 1.4.2.2.2.9
Multiply 3 by 9.
-12527+25⋅327+25⋅93⋅9+8⋅2727
Step 1.4.2.2.2.10
Multiply 3 by 9.
-12527+25⋅327+25⋅927+8⋅2727
-12527+25⋅327+25⋅927+8⋅2727
Step 1.4.2.2.3
Combine the numerators over the common denominator.
-125+25⋅3+25⋅9+8⋅2727
Step 1.4.2.2.4
Simplify each term.
Step 1.4.2.2.4.1
Multiply 25 by 3.
-125+75+25⋅9+8⋅2727
Step 1.4.2.2.4.2
Multiply 25 by 9.
-125+75+225+8⋅2727
Step 1.4.2.2.4.3
Multiply 8 by 27.
-125+75+225+21627
-125+75+225+21627
Step 1.4.2.2.5
Simplify by adding numbers.
Step 1.4.2.2.5.1
Add -125 and 75.
-50+225+21627
Step 1.4.2.2.5.2
Add -50 and 225.
175+21627
Step 1.4.2.2.5.3
Add 175 and 216.
39127
39127
39127
39127
Step 1.4.3
List all of the points.
(1,5),(-53,39127)
(1,5),(-53,39127)
(1,5),(-53,39127)
Step 2
Exclude the points that are not on the interval.
(1,5)
Step 3
Step 3.1
Split (-∞,∞) into separate intervals around the x values that make the first derivative 0 or undefined.
(-∞,-53)∪(-53,1)∪(1,∞)
Step 3.2
Substitute any number, such as -4, from the interval (-∞,-53) in the first derivative 3x2+2x-5 to check if the result is negative or positive.
Step 3.2.1
Replace the variable x with -4 in the expression.
f′(-4)=3(-4)2+2(-4)-5
Step 3.2.2
Simplify the result.
Step 3.2.2.1
Simplify each term.
Step 3.2.2.1.1
Raise -4 to the power of 2.
f′(-4)=3⋅16+2(-4)-5
Step 3.2.2.1.2
Multiply 3 by 16.
f′(-4)=48+2(-4)-5
Step 3.2.2.1.3
Multiply 2 by -4.
f′(-4)=48-8-5
f′(-4)=48-8-5
Step 3.2.2.2
Simplify by subtracting numbers.
Step 3.2.2.2.1
Subtract 8 from 48.
f′(-4)=40-5
Step 3.2.2.2.2
Subtract 5 from 40.
f′(-4)=35
f′(-4)=35
Step 3.2.2.3
The final answer is 35.
35
35
35
Step 3.3
Substitute any number, such as 0, from the interval (-53,1) in the first derivative 3x2+2x-5 to check if the result is negative or positive.
Step 3.3.1
Replace the variable x with 0 in the expression.
f′(0)=3(0)2+2(0)-5
Step 3.3.2
Simplify the result.
Step 3.3.2.1
Simplify each term.
Step 3.3.2.1.1
Raising 0 to any positive power yields 0.
f′(0)=3⋅0+2(0)-5
Step 3.3.2.1.2
Multiply 3 by 0.
f′(0)=0+2(0)-5
Step 3.3.2.1.3
Multiply 2 by 0.
f′(0)=0+0-5
f′(0)=0+0-5
Step 3.3.2.2
Simplify by adding and subtracting.
Step 3.3.2.2.1
Add 0 and 0.
f′(0)=0-5
Step 3.3.2.2.2
Subtract 5 from 0.
f′(0)=-5
f′(0)=-5
Step 3.3.2.3
The final answer is -5.
-5
-5
-5
Step 3.4
Substitute any number, such as 4, from the interval (1,∞) in the first derivative 3x2+2x-5 to check if the result is negative or positive.
Step 3.4.1
Replace the variable x with 4 in the expression.
f′(4)=3(4)2+2(4)-5
Step 3.4.2
Simplify the result.
Step 3.4.2.1
Simplify each term.
Step 3.4.2.1.1
Raise 4 to the power of 2.
f′(4)=3⋅16+2(4)-5
Step 3.4.2.1.2
Multiply 3 by 16.
f′(4)=48+2(4)-5
Step 3.4.2.1.3
Multiply 2 by 4.
f′(4)=48+8-5
f′(4)=48+8-5
Step 3.4.2.2
Simplify by adding and subtracting.
Step 3.4.2.2.1
Add 48 and 8.
f′(4)=56-5
Step 3.4.2.2.2
Subtract 5 from 56.
f′(4)=51
f′(4)=51
Step 3.4.2.3
The final answer is 51.
51
51
51
Step 3.5
Since the first derivative changed signs from positive to negative around x=-53, then x=-53 is a local maximum.
x=-53 is a local maximum
Step 3.6
Since the first derivative changed signs from negative to positive around x=1, then x=1 is a local minimum.
x=1 is a local minimum
Step 3.7
These are the local extrema for f(x)=x3+x2-5x+8.
x=-53 is a local maximum
x=1 is a local minimum
x=-53 is a local maximum
x=1 is a local minimum
Step 4
Compare the f(x) values found for each value of x in order to determine the absolute maximum and minimum over the given interval. The maximum will occur at the highest f(x) value and the minimum will occur at the lowest f(x) value.
No absolute maximum
Absolute Minimum: (1,5)
Step 5