Calculus Examples

Find the Absolute Max and Min over the Interval g(x)=(6x^2)/(x-2) , [-2,1]
g(x)=6x2x-2g(x)=6x2x2 , [-2,1][2,1]
Step 1
Find the critical points.
Tap for more steps...
Step 1.1
Find the first derivative.
Tap for more steps...
Step 1.1.1
Find the first derivative.
Tap for more steps...
Step 1.1.1.1
Since 66 is constant with respect to xx, the derivative of 6x2x-26x2x2 with respect to xx is 6ddx[x2x-2]6ddx[x2x2].
6ddx[x2x-2]6ddx[x2x2]
Step 1.1.1.2
Differentiate using the Quotient Rule which states that ddx[f(x)g(x)]ddx[f(x)g(x)] is g(x)ddx[f(x)]-f(x)ddx[g(x)]g(x)2g(x)ddx[f(x)]f(x)ddx[g(x)]g(x)2 where f(x)=x2f(x)=x2 and g(x)=x-2g(x)=x2.
6(x-2)ddx[x2]-x2ddx[x-2](x-2)26(x2)ddx[x2]x2ddx[x2](x2)2
Step 1.1.1.3
Differentiate.
Tap for more steps...
Step 1.1.1.3.1
Differentiate using the Power Rule which states that ddx[xn]ddx[xn] is nxn-1nxn1 where n=2n=2.
6(x-2)(2x)-x2ddx[x-2](x-2)26(x2)(2x)x2ddx[x2](x2)2
Step 1.1.1.3.2
Move 22 to the left of x-2x2.
62(x-2)x-x2ddx[x-2](x-2)262(x2)xx2ddx[x2](x2)2
Step 1.1.1.3.3
By the Sum Rule, the derivative of x-2x2 with respect to xx is ddx[x]+ddx[-2]ddx[x]+ddx[2].
62(x-2)x-x2(ddx[x]+ddx[-2])(x-2)262(x2)xx2(ddx[x]+ddx[2])(x2)2
Step 1.1.1.3.4
Differentiate using the Power Rule which states that ddx[xn]ddx[xn] is nxn-1nxn1 where n=1n=1.
62(x-2)x-x2(1+ddx[-2])(x-2)262(x2)xx2(1+ddx[2])(x2)2
Step 1.1.1.3.5
Since -22 is constant with respect to xx, the derivative of -22 with respect to xx is 00.
62(x-2)x-x2(1+0)(x-2)262(x2)xx2(1+0)(x2)2
Step 1.1.1.3.6
Combine fractions.
Tap for more steps...
Step 1.1.1.3.6.1
Add 11 and 00.
62(x-2)x-x21(x-2)262(x2)xx21(x2)2
Step 1.1.1.3.6.2
Multiply -11 by 11.
62(x-2)x-x2(x-2)262(x2)xx2(x2)2
Step 1.1.1.3.6.3
Combine 66 and 2(x-2)x-x2(x-2)22(x2)xx2(x2)2.
6(2(x-2)x-x2)(x-2)26(2(x2)xx2)(x2)2
6(2(x-2)x-x2)(x-2)26(2(x2)xx2)(x2)2
6(2(x-2)x-x2)(x-2)26(2(x2)xx2)(x2)2
Step 1.1.1.4
Simplify.
Tap for more steps...
Step 1.1.1.4.1
Apply the distributive property.
6((2x+2-2)x-x2)(x-2)26((2x+22)xx2)(x2)2
Step 1.1.1.4.2
Apply the distributive property.
6(2xx+2-2x-x2)(x-2)26(2xx+22xx2)(x2)2
Step 1.1.1.4.3
Apply the distributive property.
6(2xx)+6(2-2x)+6(-x2)(x-2)26(2xx)+6(22x)+6(x2)(x2)2
Step 1.1.1.4.4
Simplify the numerator.
Tap for more steps...
Step 1.1.1.4.4.1
Simplify each term.
Tap for more steps...
Step 1.1.1.4.4.1.1
Multiply xx by xx by adding the exponents.
Tap for more steps...
Step 1.1.1.4.4.1.1.1
Move xx.
6(2(xx))+6(2-2x)+6(-x2)(x-2)26(2(xx))+6(22x)+6(x2)(x2)2
Step 1.1.1.4.4.1.1.2
Multiply xx by xx.
6(2x2)+6(2-2x)+6(-x2)(x-2)26(2x2)+6(22x)+6(x2)(x2)2
6(2x2)+6(2-2x)+6(-x2)(x-2)26(2x2)+6(22x)+6(x2)(x2)2
Step 1.1.1.4.4.1.2
Multiply 22 by 66.
12x2+6(2-2x)+6(-x2)(x-2)212x2+6(22x)+6(x2)(x2)2
Step 1.1.1.4.4.1.3
Multiply 22 by -22.
12x2+6(-4x)+6(-x2)(x-2)212x2+6(4x)+6(x2)(x2)2
Step 1.1.1.4.4.1.4
Multiply -4 by 6.
12x2-24x+6(-x2)(x-2)2
Step 1.1.1.4.4.1.5
Multiply -1 by 6.
12x2-24x-6x2(x-2)2
12x2-24x-6x2(x-2)2
Step 1.1.1.4.4.2
Subtract 6x2 from 12x2.
6x2-24x(x-2)2
6x2-24x(x-2)2
Step 1.1.1.4.5
Factor 6x out of 6x2-24x.
Tap for more steps...
Step 1.1.1.4.5.1
Factor 6x out of 6x2.
6x(x)-24x(x-2)2
Step 1.1.1.4.5.2
Factor 6x out of -24x.
6x(x)+6x(-4)(x-2)2
Step 1.1.1.4.5.3
Factor 6x out of 6x(x)+6x(-4).
f(x)=6x(x-4)(x-2)2
f(x)=6x(x-4)(x-2)2
f(x)=6x(x-4)(x-2)2
f(x)=6x(x-4)(x-2)2
Step 1.1.2
The first derivative of g(x) with respect to x is 6x(x-4)(x-2)2.
6x(x-4)(x-2)2
6x(x-4)(x-2)2
Step 1.2
Set the first derivative equal to 0 then solve the equation 6x(x-4)(x-2)2=0.
Tap for more steps...
Step 1.2.1
Set the first derivative equal to 0.
6x(x-4)(x-2)2=0
Step 1.2.2
Set the numerator equal to zero.
6x(x-4)=0
Step 1.2.3
Solve the equation for x.
Tap for more steps...
Step 1.2.3.1
If any individual factor on the left side of the equation is equal to 0, the entire expression will be equal to 0.
x=0
x-4=0
Step 1.2.3.2
Set x equal to 0.
x=0
Step 1.2.3.3
Set x-4 equal to 0 and solve for x.
Tap for more steps...
Step 1.2.3.3.1
Set x-4 equal to 0.
x-4=0
Step 1.2.3.3.2
Add 4 to both sides of the equation.
x=4
x=4
Step 1.2.3.4
The final solution is all the values that make 6x(x-4)=0 true.
x=0,4
x=0,4
x=0,4
Step 1.3
Find the values where the derivative is undefined.
Tap for more steps...
Step 1.3.1
Set the denominator in 6x(x-4)(x-2)2 equal to 0 to find where the expression is undefined.
(x-2)2=0
Step 1.3.2
Solve for x.
Tap for more steps...
Step 1.3.2.1
Set the x-2 equal to 0.
x-2=0
Step 1.3.2.2
Add 2 to both sides of the equation.
x=2
x=2
x=2
Step 1.4
Evaluate 6x2x-2 at each x value where the derivative is 0 or undefined.
Tap for more steps...
Step 1.4.1
Evaluate at x=0.
Tap for more steps...
Step 1.4.1.1
Substitute 0 for x.
6(0)2(0)-2
Step 1.4.1.2
Simplify.
Tap for more steps...
Step 1.4.1.2.1
Cancel the common factor of 6 and (0)-2.
Tap for more steps...
Step 1.4.1.2.1.1
Factor 2 out of 6(0)2.
2(3(0)2)(0)-2
Step 1.4.1.2.1.2
Cancel the common factors.
Tap for more steps...
Step 1.4.1.2.1.2.1
Factor 2 out of 0.
2(3(0)2)2(0)-2
Step 1.4.1.2.1.2.2
Factor 2 out of -2.
2(3(0)2)20+2-1
Step 1.4.1.2.1.2.3
Factor 2 out of 20+2-1.
2(3(0)2)2(0-1)
Step 1.4.1.2.1.2.4
Cancel the common factor.
2(3(0)2)2(0-1)
Step 1.4.1.2.1.2.5
Rewrite the expression.
3(0)20-1
3(0)20-1
3(0)20-1
Step 1.4.1.2.2
Simplify the expression.
Tap for more steps...
Step 1.4.1.2.2.1
Raising 0 to any positive power yields 0.
300-1
Step 1.4.1.2.2.2
Subtract 1 from 0.
30-1
Step 1.4.1.2.2.3
Multiply 3 by 0.
0-1
Step 1.4.1.2.2.4
Divide 0 by -1.
0
0
0
0
Step 1.4.2
Evaluate at x=4.
Tap for more steps...
Step 1.4.2.1
Substitute 4 for x.
6(4)2(4)-2
Step 1.4.2.2
Simplify.
Tap for more steps...
Step 1.4.2.2.1
Cancel the common factor of 6 and (4)-2.
Tap for more steps...
Step 1.4.2.2.1.1
Factor 2 out of 6(4)2.
2(3(4)2)(4)-2
Step 1.4.2.2.1.2
Cancel the common factors.
Tap for more steps...
Step 1.4.2.2.1.2.1
Factor 2 out of 4.
2(3(4)2)2(2)-2
Step 1.4.2.2.1.2.2
Factor 2 out of -2.
2(3(4)2)22+2-1
Step 1.4.2.2.1.2.3
Factor 2 out of 22+2-1.
2(3(4)2)2(2-1)
Step 1.4.2.2.1.2.4
Cancel the common factor.
2(3(4)2)2(2-1)
Step 1.4.2.2.1.2.5
Rewrite the expression.
3(4)22-1
3(4)22-1
3(4)22-1
Step 1.4.2.2.2
Simplify the expression.
Tap for more steps...
Step 1.4.2.2.2.1
Raise 4 to the power of 2.
3162-1
Step 1.4.2.2.2.2
Subtract 1 from 2.
3161
Step 1.4.2.2.2.3
Multiply 3 by 16.
481
Step 1.4.2.2.2.4
Divide 48 by 1.
48
48
48
48
Step 1.4.3
Evaluate at x=2.
Tap for more steps...
Step 1.4.3.1
Substitute 2 for x.
6(2)2(2)-2
Step 1.4.3.2
Simplify.
Tap for more steps...
Step 1.4.3.2.1
Subtract 2 from 2.
6(2)20
Step 1.4.3.2.2
The expression contains a division by 0. The expression is undefined.
Undefined
Undefined
Undefined
Step 1.4.4
List all of the points.
(0,0),(4,48)
(0,0),(4,48)
(0,0),(4,48)
Step 2
Exclude the points that are not on the interval.
(0,0)
Step 3
Evaluate at the included endpoints.
Tap for more steps...
Step 3.1
Evaluate at x=-2.
Tap for more steps...
Step 3.1.1
Substitute -2 for x.
6(-2)2(-2)-2
Step 3.1.2
Simplify.
Tap for more steps...
Step 3.1.2.1
Cancel the common factor of 6 and (-2)-2.
Tap for more steps...
Step 3.1.2.1.1
Factor 2 out of 6(-2)2.
2(3(-2)2)(-2)-2
Step 3.1.2.1.2
Cancel the common factors.
Tap for more steps...
Step 3.1.2.1.2.1
Factor 2 out of -2.
2(3(-2)2)2(-1)-2
Step 3.1.2.1.2.2
Factor 2 out of -2.
2(3(-2)2)2-1+2-1
Step 3.1.2.1.2.3
Factor 2 out of 2-1+2-1.
2(3(-2)2)2(-1-1)
Step 3.1.2.1.2.4
Cancel the common factor.
2(3(-2)2)2(-1-1)
Step 3.1.2.1.2.5
Rewrite the expression.
3(-2)2-1-1
3(-2)2-1-1
3(-2)2-1-1
Step 3.1.2.2
Simplify the expression.
Tap for more steps...
Step 3.1.2.2.1
Raise -2 to the power of 2.
34-1-1
Step 3.1.2.2.2
Subtract 1 from -1.
34-2
Step 3.1.2.2.3
Multiply 3 by 4.
12-2
Step 3.1.2.2.4
Divide 12 by -2.
-6
-6
-6
-6
Step 3.2
Evaluate at x=1.
Tap for more steps...
Step 3.2.1
Substitute 1 for x.
6(1)2(1)-2
Step 3.2.2
Simplify.
Tap for more steps...
Step 3.2.2.1
One to any power is one.
611-2
Step 3.2.2.2
Subtract 2 from 1.
61-1
Step 3.2.2.3
Multiply 6 by 1.
6-1
Step 3.2.2.4
Divide 6 by -1.
-6
-6
-6
Step 3.3
List all of the points.
(-2,-6),(1,-6)
(-2,-6),(1,-6)
Step 4
Compare the g(x) values found for each value of x in order to determine the absolute maximum and minimum over the given interval. The maximum will occur at the highest g(x) value and the minimum will occur at the lowest g(x) value.
Absolute Maximum: (0,0)
Absolute Minimum: (-2,-6),(1,-6)
Step 5
 [x2  12  π  xdx ]