Enter a problem...
Calculus Examples
g(x)=6x2x-2g(x)=6x2x−2 , [-2,1][−2,1]
Step 1
Step 1.1
Find the first derivative.
Step 1.1.1
Find the first derivative.
Step 1.1.1.1
Since 66 is constant with respect to xx, the derivative of 6x2x-26x2x−2 with respect to xx is 6ddx[x2x-2]6ddx[x2x−2].
6ddx[x2x-2]6ddx[x2x−2]
Step 1.1.1.2
Differentiate using the Quotient Rule which states that ddx[f(x)g(x)]ddx[f(x)g(x)] is g(x)ddx[f(x)]-f(x)ddx[g(x)]g(x)2g(x)ddx[f(x)]−f(x)ddx[g(x)]g(x)2 where f(x)=x2f(x)=x2 and g(x)=x-2g(x)=x−2.
6(x-2)ddx[x2]-x2ddx[x-2](x-2)26(x−2)ddx[x2]−x2ddx[x−2](x−2)2
Step 1.1.1.3
Differentiate.
Step 1.1.1.3.1
Differentiate using the Power Rule which states that ddx[xn]ddx[xn] is nxn-1nxn−1 where n=2n=2.
6(x-2)(2x)-x2ddx[x-2](x-2)26(x−2)(2x)−x2ddx[x−2](x−2)2
Step 1.1.1.3.2
Move 22 to the left of x-2x−2.
62⋅(x-2)x-x2ddx[x-2](x-2)262⋅(x−2)x−x2ddx[x−2](x−2)2
Step 1.1.1.3.3
By the Sum Rule, the derivative of x-2x−2 with respect to xx is ddx[x]+ddx[-2]ddx[x]+ddx[−2].
62(x-2)x-x2(ddx[x]+ddx[-2])(x-2)262(x−2)x−x2(ddx[x]+ddx[−2])(x−2)2
Step 1.1.1.3.4
Differentiate using the Power Rule which states that ddx[xn]ddx[xn] is nxn-1nxn−1 where n=1n=1.
62(x-2)x-x2(1+ddx[-2])(x-2)262(x−2)x−x2(1+ddx[−2])(x−2)2
Step 1.1.1.3.5
Since -2−2 is constant with respect to xx, the derivative of -2−2 with respect to xx is 00.
62(x-2)x-x2(1+0)(x-2)262(x−2)x−x2(1+0)(x−2)2
Step 1.1.1.3.6
Combine fractions.
Step 1.1.1.3.6.1
Add 11 and 00.
62(x-2)x-x2⋅1(x-2)262(x−2)x−x2⋅1(x−2)2
Step 1.1.1.3.6.2
Multiply -1−1 by 11.
62(x-2)x-x2(x-2)262(x−2)x−x2(x−2)2
Step 1.1.1.3.6.3
Combine 66 and 2(x-2)x-x2(x-2)22(x−2)x−x2(x−2)2.
6(2(x-2)x-x2)(x-2)26(2(x−2)x−x2)(x−2)2
6(2(x-2)x-x2)(x-2)26(2(x−2)x−x2)(x−2)2
6(2(x-2)x-x2)(x-2)26(2(x−2)x−x2)(x−2)2
Step 1.1.1.4
Simplify.
Step 1.1.1.4.1
Apply the distributive property.
6((2x+2⋅-2)x-x2)(x-2)26((2x+2⋅−2)x−x2)(x−2)2
Step 1.1.1.4.2
Apply the distributive property.
6(2x⋅x+2⋅-2x-x2)(x-2)26(2x⋅x+2⋅−2x−x2)(x−2)2
Step 1.1.1.4.3
Apply the distributive property.
6(2x⋅x)+6(2⋅-2x)+6(-x2)(x-2)26(2x⋅x)+6(2⋅−2x)+6(−x2)(x−2)2
Step 1.1.1.4.4
Simplify the numerator.
Step 1.1.1.4.4.1
Simplify each term.
Step 1.1.1.4.4.1.1
Multiply xx by xx by adding the exponents.
Step 1.1.1.4.4.1.1.1
Move xx.
6(2(x⋅x))+6(2⋅-2x)+6(-x2)(x-2)26(2(x⋅x))+6(2⋅−2x)+6(−x2)(x−2)2
Step 1.1.1.4.4.1.1.2
Multiply xx by xx.
6(2x2)+6(2⋅-2x)+6(-x2)(x-2)26(2x2)+6(2⋅−2x)+6(−x2)(x−2)2
6(2x2)+6(2⋅-2x)+6(-x2)(x-2)26(2x2)+6(2⋅−2x)+6(−x2)(x−2)2
Step 1.1.1.4.4.1.2
Multiply 22 by 66.
12x2+6(2⋅-2x)+6(-x2)(x-2)212x2+6(2⋅−2x)+6(−x2)(x−2)2
Step 1.1.1.4.4.1.3
Multiply 22 by -2−2.
12x2+6(-4x)+6(-x2)(x-2)212x2+6(−4x)+6(−x2)(x−2)2
Step 1.1.1.4.4.1.4
Multiply -4 by 6.
12x2-24x+6(-x2)(x-2)2
Step 1.1.1.4.4.1.5
Multiply -1 by 6.
12x2-24x-6x2(x-2)2
12x2-24x-6x2(x-2)2
Step 1.1.1.4.4.2
Subtract 6x2 from 12x2.
6x2-24x(x-2)2
6x2-24x(x-2)2
Step 1.1.1.4.5
Factor 6x out of 6x2-24x.
Step 1.1.1.4.5.1
Factor 6x out of 6x2.
6x(x)-24x(x-2)2
Step 1.1.1.4.5.2
Factor 6x out of -24x.
6x(x)+6x(-4)(x-2)2
Step 1.1.1.4.5.3
Factor 6x out of 6x(x)+6x(-4).
f′(x)=6x(x-4)(x-2)2
f′(x)=6x(x-4)(x-2)2
f′(x)=6x(x-4)(x-2)2
f′(x)=6x(x-4)(x-2)2
Step 1.1.2
The first derivative of g(x) with respect to x is 6x(x-4)(x-2)2.
6x(x-4)(x-2)2
6x(x-4)(x-2)2
Step 1.2
Set the first derivative equal to 0 then solve the equation 6x(x-4)(x-2)2=0.
Step 1.2.1
Set the first derivative equal to 0.
6x(x-4)(x-2)2=0
Step 1.2.2
Set the numerator equal to zero.
6x(x-4)=0
Step 1.2.3
Solve the equation for x.
Step 1.2.3.1
If any individual factor on the left side of the equation is equal to 0, the entire expression will be equal to 0.
x=0
x-4=0
Step 1.2.3.2
Set x equal to 0.
x=0
Step 1.2.3.3
Set x-4 equal to 0 and solve for x.
Step 1.2.3.3.1
Set x-4 equal to 0.
x-4=0
Step 1.2.3.3.2
Add 4 to both sides of the equation.
x=4
x=4
Step 1.2.3.4
The final solution is all the values that make 6x(x-4)=0 true.
x=0,4
x=0,4
x=0,4
Step 1.3
Find the values where the derivative is undefined.
Step 1.3.1
Set the denominator in 6x(x-4)(x-2)2 equal to 0 to find where the expression is undefined.
(x-2)2=0
Step 1.3.2
Solve for x.
Step 1.3.2.1
Set the x-2 equal to 0.
x-2=0
Step 1.3.2.2
Add 2 to both sides of the equation.
x=2
x=2
x=2
Step 1.4
Evaluate 6x2x-2 at each x value where the derivative is 0 or undefined.
Step 1.4.1
Evaluate at x=0.
Step 1.4.1.1
Substitute 0 for x.
6(0)2(0)-2
Step 1.4.1.2
Simplify.
Step 1.4.1.2.1
Cancel the common factor of 6 and (0)-2.
Step 1.4.1.2.1.1
Factor 2 out of 6(0)2.
2(3(0)2)(0)-2
Step 1.4.1.2.1.2
Cancel the common factors.
Step 1.4.1.2.1.2.1
Factor 2 out of 0.
2(3(0)2)2(0)-2
Step 1.4.1.2.1.2.2
Factor 2 out of -2.
2(3(0)2)2⋅0+2⋅-1
Step 1.4.1.2.1.2.3
Factor 2 out of 2⋅0+2⋅-1.
2(3(0)2)2⋅(0-1)
Step 1.4.1.2.1.2.4
Cancel the common factor.
2(3(0)2)2⋅(0-1)
Step 1.4.1.2.1.2.5
Rewrite the expression.
3(0)20-1
3(0)20-1
3(0)20-1
Step 1.4.1.2.2
Simplify the expression.
Step 1.4.1.2.2.1
Raising 0 to any positive power yields 0.
3⋅00-1
Step 1.4.1.2.2.2
Subtract 1 from 0.
3⋅0-1
Step 1.4.1.2.2.3
Multiply 3 by 0.
0-1
Step 1.4.1.2.2.4
Divide 0 by -1.
0
0
0
0
Step 1.4.2
Evaluate at x=4.
Step 1.4.2.1
Substitute 4 for x.
6(4)2(4)-2
Step 1.4.2.2
Simplify.
Step 1.4.2.2.1
Cancel the common factor of 6 and (4)-2.
Step 1.4.2.2.1.1
Factor 2 out of 6(4)2.
2(3(4)2)(4)-2
Step 1.4.2.2.1.2
Cancel the common factors.
Step 1.4.2.2.1.2.1
Factor 2 out of 4.
2(3(4)2)2(2)-2
Step 1.4.2.2.1.2.2
Factor 2 out of -2.
2(3(4)2)2⋅2+2⋅-1
Step 1.4.2.2.1.2.3
Factor 2 out of 2⋅2+2⋅-1.
2(3(4)2)2⋅(2-1)
Step 1.4.2.2.1.2.4
Cancel the common factor.
2(3(4)2)2⋅(2-1)
Step 1.4.2.2.1.2.5
Rewrite the expression.
3(4)22-1
3(4)22-1
3(4)22-1
Step 1.4.2.2.2
Simplify the expression.
Step 1.4.2.2.2.1
Raise 4 to the power of 2.
3⋅162-1
Step 1.4.2.2.2.2
Subtract 1 from 2.
3⋅161
Step 1.4.2.2.2.3
Multiply 3 by 16.
481
Step 1.4.2.2.2.4
Divide 48 by 1.
48
48
48
48
Step 1.4.3
Evaluate at x=2.
Step 1.4.3.1
Substitute 2 for x.
6(2)2(2)-2
Step 1.4.3.2
Simplify.
Step 1.4.3.2.1
Subtract 2 from 2.
6(2)20
Step 1.4.3.2.2
The expression contains a division by 0. The expression is undefined.
Undefined
Undefined
Undefined
Step 1.4.4
List all of the points.
(0,0),(4,48)
(0,0),(4,48)
(0,0),(4,48)
Step 2
Exclude the points that are not on the interval.
(0,0)
Step 3
Step 3.1
Evaluate at x=-2.
Step 3.1.1
Substitute -2 for x.
6(-2)2(-2)-2
Step 3.1.2
Simplify.
Step 3.1.2.1
Cancel the common factor of 6 and (-2)-2.
Step 3.1.2.1.1
Factor 2 out of 6(-2)2.
2(3(-2)2)(-2)-2
Step 3.1.2.1.2
Cancel the common factors.
Step 3.1.2.1.2.1
Factor 2 out of -2.
2(3(-2)2)2(-1)-2
Step 3.1.2.1.2.2
Factor 2 out of -2.
2(3(-2)2)2⋅-1+2⋅-1
Step 3.1.2.1.2.3
Factor 2 out of 2⋅-1+2⋅-1.
2(3(-2)2)2⋅(-1-1)
Step 3.1.2.1.2.4
Cancel the common factor.
2(3(-2)2)2⋅(-1-1)
Step 3.1.2.1.2.5
Rewrite the expression.
3(-2)2-1-1
3(-2)2-1-1
3(-2)2-1-1
Step 3.1.2.2
Simplify the expression.
Step 3.1.2.2.1
Raise -2 to the power of 2.
3⋅4-1-1
Step 3.1.2.2.2
Subtract 1 from -1.
3⋅4-2
Step 3.1.2.2.3
Multiply 3 by 4.
12-2
Step 3.1.2.2.4
Divide 12 by -2.
-6
-6
-6
-6
Step 3.2
Evaluate at x=1.
Step 3.2.1
Substitute 1 for x.
6(1)2(1)-2
Step 3.2.2
Simplify.
Step 3.2.2.1
One to any power is one.
6⋅11-2
Step 3.2.2.2
Subtract 2 from 1.
6⋅1-1
Step 3.2.2.3
Multiply 6 by 1.
6-1
Step 3.2.2.4
Divide 6 by -1.
-6
-6
-6
Step 3.3
List all of the points.
(-2,-6),(1,-6)
(-2,-6),(1,-6)
Step 4
Compare the g(x) values found for each value of x in order to determine the absolute maximum and minimum over the given interval. The maximum will occur at the highest g(x) value and the minimum will occur at the lowest g(x) value.
Absolute Maximum: (0,0)
Absolute Minimum: (-2,-6),(1,-6)
Step 5