Enter a problem...
Calculus Examples
f(x)=-√x+1+2f(x)=−√x+1+2 ; 3≤x≤103≤x≤10
Step 1
Step 1.1
Find the first derivative.
Step 1.1.1
Find the first derivative.
Step 1.1.1.1
By the Sum Rule, the derivative of -√x+1+2−√x+1+2 with respect to xx is ddx[-√x+1]+ddx[2]ddx[−√x+1]+ddx[2].
ddx[-√x+1]+ddx[2]ddx[−√x+1]+ddx[2]
Step 1.1.1.2
Evaluate ddx[-√x+1]ddx[−√x+1].
Step 1.1.1.2.1
Use n√ax=axnn√ax=axn to rewrite √x+1√x+1 as (x+1)12(x+1)12.
ddx[-(x+1)12]+ddx[2]ddx[−(x+1)12]+ddx[2]
Step 1.1.1.2.2
Since -1−1 is constant with respect to xx, the derivative of -(x+1)12−(x+1)12 with respect to xx is -ddx[(x+1)12]−ddx[(x+1)12].
-ddx[(x+1)12]+ddx[2]−ddx[(x+1)12]+ddx[2]
Step 1.1.1.2.3
Differentiate using the chain rule, which states that ddx[f(g(x))]ddx[f(g(x))] is f′(g(x))g′(x)f'(g(x))g'(x) where f(x)=x12f(x)=x12 and g(x)=x+1g(x)=x+1.
Step 1.1.1.2.3.1
To apply the Chain Rule, set uu as x+1x+1.
-(ddu[u12]ddx[x+1])+ddx[2]−(ddu[u12]ddx[x+1])+ddx[2]
Step 1.1.1.2.3.2
Differentiate using the Power Rule which states that ddu[un]ddu[un] is nun-1nun−1 where n=12n=12.
-(12u12-1ddx[x+1])+ddx[2]−(12u12−1ddx[x+1])+ddx[2]
Step 1.1.1.2.3.3
Replace all occurrences of uu with x+1x+1.
-(12(x+1)12-1ddx[x+1])+ddx[2]−(12(x+1)12−1ddx[x+1])+ddx[2]
-(12(x+1)12-1ddx[x+1])+ddx[2]−(12(x+1)12−1ddx[x+1])+ddx[2]
Step 1.1.1.2.4
By the Sum Rule, the derivative of x+1x+1 with respect to xx is ddx[x]+ddx[1]ddx[x]+ddx[1].
-(12(x+1)12-1(ddx[x]+ddx[1]))+ddx[2]−(12(x+1)12−1(ddx[x]+ddx[1]))+ddx[2]
Step 1.1.1.2.5
Differentiate using the Power Rule which states that ddx[xn]ddx[xn] is nxn-1nxn−1 where n=1n=1.
-(12(x+1)12-1(1+ddx[1]))+ddx[2]−(12(x+1)12−1(1+ddx[1]))+ddx[2]
Step 1.1.1.2.6
Since 11 is constant with respect to xx, the derivative of 11 with respect to xx is 00.
-(12(x+1)12-1(1+0))+ddx[2]−(12(x+1)12−1(1+0))+ddx[2]
Step 1.1.1.2.7
To write -1−1 as a fraction with a common denominator, multiply by 2222.
-(12(x+1)12-1⋅22(1+0))+ddx[2]−(12(x+1)12−1⋅22(1+0))+ddx[2]
Step 1.1.1.2.8
Combine -1−1 and 2222.
-(12(x+1)12+-1⋅22(1+0))+ddx[2]−(12(x+1)12+−1⋅22(1+0))+ddx[2]
Step 1.1.1.2.9
Combine the numerators over the common denominator.
-(12(x+1)1-1⋅22(1+0))+ddx[2]−(12(x+1)1−1⋅22(1+0))+ddx[2]
Step 1.1.1.2.10
Simplify the numerator.
Step 1.1.1.2.10.1
Multiply -1−1 by 22.
-(12(x+1)1-22(1+0))+ddx[2]−(12(x+1)1−22(1+0))+ddx[2]
Step 1.1.1.2.10.2
Subtract 22 from 11.
-(12(x+1)-12(1+0))+ddx[2]−(12(x+1)−12(1+0))+ddx[2]
-(12(x+1)-12(1+0))+ddx[2]−(12(x+1)−12(1+0))+ddx[2]
Step 1.1.1.2.11
Move the negative in front of the fraction.
-(12(x+1)-12(1+0))+ddx[2]−(12(x+1)−12(1+0))+ddx[2]
Step 1.1.1.2.12
Add 11 and 00.
-(12(x+1)-12⋅1)+ddx[2]−(12(x+1)−12⋅1)+ddx[2]
Step 1.1.1.2.13
Combine 1212 and (x+1)-12(x+1)−12.
-((x+1)-122⋅1)+ddx[2]−((x+1)−122⋅1)+ddx[2]
Step 1.1.1.2.14
Multiply (x+1)-122(x+1)−122 by 11.
-(x+1)-122+ddx[2]−(x+1)−122+ddx[2]
Step 1.1.1.2.15
Move (x+1)-12(x+1)−12 to the denominator using the negative exponent rule b-n=1bnb−n=1bn.
-12(x+1)12+ddx[2]−12(x+1)12+ddx[2]
-12(x+1)12+ddx[2]−12(x+1)12+ddx[2]
Step 1.1.1.3
Differentiate using the Constant Rule.
Step 1.1.1.3.1
Since 22 is constant with respect to xx, the derivative of 22 with respect to xx is 00.
-12(x+1)12+0−12(x+1)12+0
Step 1.1.1.3.2
Add -12(x+1)12−12(x+1)12 and 00.
f′(x)=-12(x+1)12f'(x)=−12(x+1)12
f′(x)=-12(x+1)12f'(x)=−12(x+1)12
f′(x)=-12(x+1)12f'(x)=−12(x+1)12
Step 1.1.2
The first derivative of f(x)f(x) with respect to xx is -12(x+1)12−12(x+1)12.
-12(x+1)12−12(x+1)12
-12(x+1)12−12(x+1)12
Step 1.2
Set the first derivative equal to 00 then solve the equation -12(x+1)12=0−12(x+1)12=0.
Step 1.2.1
Set the first derivative equal to 00.
-12(x+1)12=0−12(x+1)12=0
Step 1.2.2
Set the numerator equal to zero.
1=01=0
Step 1.2.3
Since 1≠01≠0, there are no solutions.
No solution
No solution
Step 1.3
Find the values where the derivative is undefined.
Step 1.3.1
Convert expressions with fractional exponents to radicals.
Step 1.3.1.1
Apply the rule xmn=n√xmxmn=n√xm to rewrite the exponentiation as a radical.
-12√(x+1)1−12√(x+1)1
Step 1.3.1.2
Anything raised to 11 is the base itself.
-12√x+1−12√x+1
-12√x+1−12√x+1
Step 1.3.2
Set the denominator in 12√x+112√x+1 equal to 0 to find where the expression is undefined.
2√x+1=0
Step 1.3.3
Solve for x.
Step 1.3.3.1
To remove the radical on the left side of the equation, square both sides of the equation.
(2√x+1)2=02
Step 1.3.3.2
Simplify each side of the equation.
Step 1.3.3.2.1
Use n√ax=axn to rewrite √x+1 as (x+1)12.
(2(x+1)12)2=02
Step 1.3.3.2.2
Simplify the left side.
Step 1.3.3.2.2.1
Simplify (2(x+1)12)2.
Step 1.3.3.2.2.1.1
Apply the product rule to 2(x+1)12.
22((x+1)12)2=02
Step 1.3.3.2.2.1.2
Raise 2 to the power of 2.
4((x+1)12)2=02
Step 1.3.3.2.2.1.3
Multiply the exponents in ((x+1)12)2.
Step 1.3.3.2.2.1.3.1
Apply the power rule and multiply exponents, (am)n=amn.
4(x+1)12⋅2=02
Step 1.3.3.2.2.1.3.2
Cancel the common factor of 2.
Step 1.3.3.2.2.1.3.2.1
Cancel the common factor.
4(x+1)12⋅2=02
Step 1.3.3.2.2.1.3.2.2
Rewrite the expression.
4(x+1)1=02
4(x+1)1=02
4(x+1)1=02
Step 1.3.3.2.2.1.4
Simplify.
4(x+1)=02
Step 1.3.3.2.2.1.5
Apply the distributive property.
4x+4⋅1=02
Step 1.3.3.2.2.1.6
Multiply 4 by 1.
4x+4=02
4x+4=02
4x+4=02
Step 1.3.3.2.3
Simplify the right side.
Step 1.3.3.2.3.1
Raising 0 to any positive power yields 0.
4x+4=0
4x+4=0
4x+4=0
Step 1.3.3.3
Solve for x.
Step 1.3.3.3.1
Subtract 4 from both sides of the equation.
4x=-4
Step 1.3.3.3.2
Divide each term in 4x=-4 by 4 and simplify.
Step 1.3.3.3.2.1
Divide each term in 4x=-4 by 4.
4x4=-44
Step 1.3.3.3.2.2
Simplify the left side.
Step 1.3.3.3.2.2.1
Cancel the common factor of 4.
Step 1.3.3.3.2.2.1.1
Cancel the common factor.
4x4=-44
Step 1.3.3.3.2.2.1.2
Divide x by 1.
x=-44
x=-44
x=-44
Step 1.3.3.3.2.3
Simplify the right side.
Step 1.3.3.3.2.3.1
Divide -4 by 4.
x=-1
x=-1
x=-1
x=-1
x=-1
Step 1.3.4
Set the radicand in √x+1 less than 0 to find where the expression is undefined.
x+1<0
Step 1.3.5
Subtract 1 from both sides of the inequality.
x<-1
Step 1.3.6
The equation is undefined where the denominator equals 0, the argument of a square root is less than 0, or the argument of a logarithm is less than or equal to 0.
x≤-1
(-∞,-1]
x≤-1
(-∞,-1]
Step 1.4
Evaluate -√x+1+2 at each x value where the derivative is 0 or undefined.
Step 1.4.1
Evaluate at x=-1.
Step 1.4.1.1
Substitute -1 for x.
-√(-1)+1+2
Step 1.4.1.2
Simplify.
Step 1.4.1.2.1
Simplify each term.
Step 1.4.1.2.1.1
Add -1 and 1.
-√0+2
Step 1.4.1.2.1.2
Rewrite 0 as 02.
-√02+2
Step 1.4.1.2.1.3
Pull terms out from under the radical, assuming positive real numbers.
-0+2
Step 1.4.1.2.1.4
Multiply -1 by 0.
0+2
0+2
Step 1.4.1.2.2
Add 0 and 2.
2
2
2
Step 1.4.2
List all of the points.
(-1,2)
(-1,2)
(-1,2)
Step 2
Exclude the points that are not on the interval.
Step 3
Step 3.1
Evaluate at x=3.
Step 3.1.1
Substitute 3 for x.
-√(3)+1+2
Step 3.1.2
Simplify.
Step 3.1.2.1
Simplify each term.
Step 3.1.2.1.1
Add 3 and 1.
-√4+2
Step 3.1.2.1.2
Rewrite 4 as 22.
-√22+2
Step 3.1.2.1.3
Pull terms out from under the radical, assuming positive real numbers.
-1⋅2+2
Step 3.1.2.1.4
Multiply -1 by 2.
-2+2
-2+2
Step 3.1.2.2
Add -2 and 2.
0
0
0
Step 3.2
Evaluate at x=10.
Step 3.2.1
Substitute 10 for x.
-√(10)+1+2
Step 3.2.2
Add 10 and 1.
-√11+2
-√11+2
Step 3.3
List all of the points.
(3,0),(10,-√11+2)
(3,0),(10,-√11+2)
Step 4
Compare the f(x) values found for each value of x in order to determine the absolute maximum and minimum over the given interval. The maximum will occur at the highest f(x) value and the minimum will occur at the lowest f(x) value.
Absolute Maximum: (3,0)
Absolute Minimum: (10,-√11+2)
Step 5