Enter a problem...
Calculus Examples
f(x)=3√x-8-1 ; [0,7]
Step 1
Step 1.1
Find the first derivative.
Step 1.1.1
Find the first derivative.
Step 1.1.1.1
By the Sum Rule, the derivative of 3√x-8-1 with respect to x is ddx[3√x-8]+ddx[-1].
f′(x)=ddx(3√x-8)+ddx(-1)
Step 1.1.1.2
Evaluate ddx[3√x-8].
Step 1.1.1.2.1
Use n√ax=axn to rewrite 3√x-8 as (x-8)13.
f′(x)=ddx((x-8)13)+ddx(-1)
Step 1.1.1.2.2
Differentiate using the chain rule, which states that ddx[f(g(x))] is f′(g(x))g′(x) where f(x)=x13 and g(x)=x-8.
Step 1.1.1.2.2.1
To apply the Chain Rule, set u as x-8.
f′(x)=ddu(u13)ddx(x-8)+ddx(-1)
Step 1.1.1.2.2.2
Differentiate using the Power Rule which states that ddu[un] is nun-1 where n=13.
f′(x)=13u13-1ddx(x-8)+ddx(-1)
Step 1.1.1.2.2.3
Replace all occurrences of u with x-8.
f′(x)=13⋅(x-8)13-1ddx(x-8)+ddx(-1)
f′(x)=13⋅(x-8)13-1ddx(x-8)+ddx(-1)
Step 1.1.1.2.3
By the Sum Rule, the derivative of x-8 with respect to x is ddx[x]+ddx[-8].
f′(x)=13⋅((x-8)13-1(ddx(x)+ddx(-8)))+ddx(-1)
Step 1.1.1.2.4
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=1.
f′(x)=13⋅((x-8)13-1(1+ddx(-8)))+ddx(-1)
Step 1.1.1.2.5
Since -8 is constant with respect to x, the derivative of -8 with respect to x is 0.
f′(x)=13⋅((x-8)13-1(1+0))+ddx(-1)
Step 1.1.1.2.6
To write -1 as a fraction with a common denominator, multiply by 33.
f′(x)=13⋅((x-8)13-1⋅33(1+0))+ddx(-1)
Step 1.1.1.2.7
Combine -1 and 33.
f′(x)=13⋅((x-8)13+-1⋅33(1+0))+ddx(-1)
Step 1.1.1.2.8
Combine the numerators over the common denominator.
f′(x)=13⋅((x-8)1-1⋅33(1+0))+ddx(-1)
Step 1.1.1.2.9
Simplify the numerator.
Step 1.1.1.2.9.1
Multiply -1 by 3.
f′(x)=13⋅((x-8)1-33(1+0))+ddx(-1)
Step 1.1.1.2.9.2
Subtract 3 from 1.
f′(x)=13⋅((x-8)-23(1+0))+ddx(-1)
f′(x)=13⋅((x-8)-23(1+0))+ddx(-1)
Step 1.1.1.2.10
Move the negative in front of the fraction.
f′(x)=13⋅((x-8)-23(1+0))+ddx(-1)
Step 1.1.1.2.11
Add 1 and 0.
f′(x)=13⋅(x-8)-23⋅1+ddx(-1)
Step 1.1.1.2.12
Combine 13 and (x-8)-23.
f′(x)=(x-8)-233⋅1+ddx(-1)
Step 1.1.1.2.13
Multiply (x-8)-233 by 1.
f′(x)=(x-8)-233+ddx(-1)
Step 1.1.1.2.14
Move (x-8)-23 to the denominator using the negative exponent rule b-n=1bn.
f′(x)=13(x-8)23+ddx(-1)
f′(x)=13(x-8)23+ddx(-1)
Step 1.1.1.3
Differentiate using the Constant Rule.
Step 1.1.1.3.1
Since -1 is constant with respect to x, the derivative of -1 with respect to x is 0.
f′(x)=13(x-8)23+0
Step 1.1.1.3.2
Add 13(x-8)23 and 0.
f′(x)=13(x-8)23
f′(x)=13(x-8)23
f′(x)=13(x-8)23
Step 1.1.2
The first derivative of f(x) with respect to x is 13(x-8)23.
13(x-8)23
13(x-8)23
Step 1.2
Set the first derivative equal to 0 then solve the equation 13(x-8)23=0.
Step 1.2.1
Set the first derivative equal to 0.
13(x-8)23=0
Step 1.2.2
Set the numerator equal to zero.
1=0
Step 1.2.3
Since 1≠0, there are no solutions.
No solution
No solution
Step 1.3
Find the values where the derivative is undefined.
Step 1.3.1
Apply the rule xmn=n√xm to rewrite the exponentiation as a radical.
133√(x-8)2
Step 1.3.2
Set the denominator in 133√(x-8)2 equal to 0 to find where the expression is undefined.
33√(x-8)2=0
Step 1.3.3
Solve for x.
Step 1.3.3.1
To remove the radical on the left side of the equation, cube both sides of the equation.
(33√(x-8)2)3=03
Step 1.3.3.2
Simplify each side of the equation.
Step 1.3.3.2.1
Use n√ax=axn to rewrite 3√(x-8)2 as (x-8)23.
(3(x-8)23)3=03
Step 1.3.3.2.2
Simplify the left side.
Step 1.3.3.2.2.1
Simplify (3(x-8)23)3.
Step 1.3.3.2.2.1.1
Apply the product rule to 3(x-8)23.
33((x-8)23)3=03
Step 1.3.3.2.2.1.2
Raise 3 to the power of 3.
27((x-8)23)3=03
Step 1.3.3.2.2.1.3
Multiply the exponents in ((x-8)23)3.
Step 1.3.3.2.2.1.3.1
Apply the power rule and multiply exponents, (am)n=amn.
27(x-8)23⋅3=03
Step 1.3.3.2.2.1.3.2
Cancel the common factor of 3.
Step 1.3.3.2.2.1.3.2.1
Cancel the common factor.
27(x-8)23⋅3=03
Step 1.3.3.2.2.1.3.2.2
Rewrite the expression.
27(x-8)2=03
27(x-8)2=03
27(x-8)2=03
27(x-8)2=03
27(x-8)2=03
Step 1.3.3.2.3
Simplify the right side.
Step 1.3.3.2.3.1
Raising 0 to any positive power yields 0.
27(x-8)2=0
27(x-8)2=0
27(x-8)2=0
Step 1.3.3.3
Solve for x.
Step 1.3.3.3.1
Divide each term in 27(x-8)2=0 by 27 and simplify.
Step 1.3.3.3.1.1
Divide each term in 27(x-8)2=0 by 27.
27(x-8)227=027
Step 1.3.3.3.1.2
Simplify the left side.
Step 1.3.3.3.1.2.1
Cancel the common factor of 27.
Step 1.3.3.3.1.2.1.1
Cancel the common factor.
27(x-8)227=027
Step 1.3.3.3.1.2.1.2
Divide (x-8)2 by 1.
(x-8)2=027
(x-8)2=027
(x-8)2=027
Step 1.3.3.3.1.3
Simplify the right side.
Step 1.3.3.3.1.3.1
Divide 0 by 27.
(x-8)2=0
(x-8)2=0
(x-8)2=0
Step 1.3.3.3.2
Set the x-8 equal to 0.
x-8=0
Step 1.3.3.3.3
Add 8 to both sides of the equation.
x=8
x=8
x=8
x=8
Step 1.4
Evaluate 3√x-8-1 at each x value where the derivative is 0 or undefined.
Step 1.4.1
Evaluate at x=8.
Step 1.4.1.1
Substitute 8 for x.
3√(8)-8-1
Step 1.4.1.2
Simplify.
Step 1.4.1.2.1
Simplify each term.
Step 1.4.1.2.1.1
Subtract 8 from 8.
3√0-1
Step 1.4.1.2.1.2
Rewrite 0 as 03.
3√03-1
Step 1.4.1.2.1.3
Pull terms out from under the radical, assuming real numbers.
0-1
0-1
Step 1.4.1.2.2
Subtract 1 from 0.
-1
-1
-1
Step 1.4.2
List all of the points.
(8,-1)
(8,-1)
(8,-1)
Step 2
Exclude the points that are not on the interval.
Step 3
Step 3.1
Evaluate at x=0.
Step 3.1.1
Substitute 0 for x.
3√(0)-8-1
Step 3.1.2
Simplify.
Step 3.1.2.1
Simplify each term.
Step 3.1.2.1.1
Subtract 8 from 0.
3√-8-1
Step 3.1.2.1.2
Rewrite -8 as (-2)3.
3√(-2)3-1
Step 3.1.2.1.3
Pull terms out from under the radical, assuming real numbers.
-2-1
-2-1
Step 3.1.2.2
Subtract 1 from -2.
-3
-3
-3
Step 3.2
Evaluate at x=7.
Step 3.2.1
Substitute 7 for x.
3√(7)-8-1
Step 3.2.2
Simplify.
Step 3.2.2.1
Simplify each term.
Step 3.2.2.1.1
Subtract 8 from 7.
3√-1-1
Step 3.2.2.1.2
Rewrite -1 as (-1)3.
3√(-1)3-1
Step 3.2.2.1.3
Pull terms out from under the radical, assuming real numbers.
-1-1
-1-1
Step 3.2.2.2
Subtract 1 from -1.
-2
-2
-2
Step 3.3
List all of the points.
(0,-3),(7,-2)
(0,-3),(7,-2)
Step 4
Compare the f(x) values found for each value of x in order to determine the absolute maximum and minimum over the given interval. The maximum will occur at the highest f(x) value and the minimum will occur at the lowest f(x) value.
Absolute Maximum: (7,-2)
Absolute Minimum: (0,-3)
Step 5