Calculus Examples

Find the Absolute Max and Min over the Interval f(x) = cube root of x-8-1 ; [0,7]
f(x)=3x-8-1 ; [0,7]
Step 1
Find the critical points.
Tap for more steps...
Step 1.1
Find the first derivative.
Tap for more steps...
Step 1.1.1
Find the first derivative.
Tap for more steps...
Step 1.1.1.1
By the Sum Rule, the derivative of 3x-8-1 with respect to x is ddx[3x-8]+ddx[-1].
f(x)=ddx(3x-8)+ddx(-1)
Step 1.1.1.2
Evaluate ddx[3x-8].
Tap for more steps...
Step 1.1.1.2.1
Use nax=axn to rewrite 3x-8 as (x-8)13.
f(x)=ddx((x-8)13)+ddx(-1)
Step 1.1.1.2.2
Differentiate using the chain rule, which states that ddx[f(g(x))] is f(g(x))g(x) where f(x)=x13 and g(x)=x-8.
Tap for more steps...
Step 1.1.1.2.2.1
To apply the Chain Rule, set u as x-8.
f(x)=ddu(u13)ddx(x-8)+ddx(-1)
Step 1.1.1.2.2.2
Differentiate using the Power Rule which states that ddu[un] is nun-1 where n=13.
f(x)=13u13-1ddx(x-8)+ddx(-1)
Step 1.1.1.2.2.3
Replace all occurrences of u with x-8.
f(x)=13(x-8)13-1ddx(x-8)+ddx(-1)
f(x)=13(x-8)13-1ddx(x-8)+ddx(-1)
Step 1.1.1.2.3
By the Sum Rule, the derivative of x-8 with respect to x is ddx[x]+ddx[-8].
f(x)=13((x-8)13-1(ddx(x)+ddx(-8)))+ddx(-1)
Step 1.1.1.2.4
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=1.
f(x)=13((x-8)13-1(1+ddx(-8)))+ddx(-1)
Step 1.1.1.2.5
Since -8 is constant with respect to x, the derivative of -8 with respect to x is 0.
f(x)=13((x-8)13-1(1+0))+ddx(-1)
Step 1.1.1.2.6
To write -1 as a fraction with a common denominator, multiply by 33.
f(x)=13((x-8)13-133(1+0))+ddx(-1)
Step 1.1.1.2.7
Combine -1 and 33.
f(x)=13((x-8)13+-133(1+0))+ddx(-1)
Step 1.1.1.2.8
Combine the numerators over the common denominator.
f(x)=13((x-8)1-133(1+0))+ddx(-1)
Step 1.1.1.2.9
Simplify the numerator.
Tap for more steps...
Step 1.1.1.2.9.1
Multiply -1 by 3.
f(x)=13((x-8)1-33(1+0))+ddx(-1)
Step 1.1.1.2.9.2
Subtract 3 from 1.
f(x)=13((x-8)-23(1+0))+ddx(-1)
f(x)=13((x-8)-23(1+0))+ddx(-1)
Step 1.1.1.2.10
Move the negative in front of the fraction.
f(x)=13((x-8)-23(1+0))+ddx(-1)
Step 1.1.1.2.11
Add 1 and 0.
f(x)=13(x-8)-231+ddx(-1)
Step 1.1.1.2.12
Combine 13 and (x-8)-23.
f(x)=(x-8)-2331+ddx(-1)
Step 1.1.1.2.13
Multiply (x-8)-233 by 1.
f(x)=(x-8)-233+ddx(-1)
Step 1.1.1.2.14
Move (x-8)-23 to the denominator using the negative exponent rule b-n=1bn.
f(x)=13(x-8)23+ddx(-1)
f(x)=13(x-8)23+ddx(-1)
Step 1.1.1.3
Differentiate using the Constant Rule.
Tap for more steps...
Step 1.1.1.3.1
Since -1 is constant with respect to x, the derivative of -1 with respect to x is 0.
f(x)=13(x-8)23+0
Step 1.1.1.3.2
Add 13(x-8)23 and 0.
f(x)=13(x-8)23
f(x)=13(x-8)23
f(x)=13(x-8)23
Step 1.1.2
The first derivative of f(x) with respect to x is 13(x-8)23.
13(x-8)23
13(x-8)23
Step 1.2
Set the first derivative equal to 0 then solve the equation 13(x-8)23=0.
Tap for more steps...
Step 1.2.1
Set the first derivative equal to 0.
13(x-8)23=0
Step 1.2.2
Set the numerator equal to zero.
1=0
Step 1.2.3
Since 10, there are no solutions.
No solution
No solution
Step 1.3
Find the values where the derivative is undefined.
Tap for more steps...
Step 1.3.1
Apply the rule xmn=nxm to rewrite the exponentiation as a radical.
133(x-8)2
Step 1.3.2
Set the denominator in 133(x-8)2 equal to 0 to find where the expression is undefined.
33(x-8)2=0
Step 1.3.3
Solve for x.
Tap for more steps...
Step 1.3.3.1
To remove the radical on the left side of the equation, cube both sides of the equation.
(33(x-8)2)3=03
Step 1.3.3.2
Simplify each side of the equation.
Tap for more steps...
Step 1.3.3.2.1
Use nax=axn to rewrite 3(x-8)2 as (x-8)23.
(3(x-8)23)3=03
Step 1.3.3.2.2
Simplify the left side.
Tap for more steps...
Step 1.3.3.2.2.1
Simplify (3(x-8)23)3.
Tap for more steps...
Step 1.3.3.2.2.1.1
Apply the product rule to 3(x-8)23.
33((x-8)23)3=03
Step 1.3.3.2.2.1.2
Raise 3 to the power of 3.
27((x-8)23)3=03
Step 1.3.3.2.2.1.3
Multiply the exponents in ((x-8)23)3.
Tap for more steps...
Step 1.3.3.2.2.1.3.1
Apply the power rule and multiply exponents, (am)n=amn.
27(x-8)233=03
Step 1.3.3.2.2.1.3.2
Cancel the common factor of 3.
Tap for more steps...
Step 1.3.3.2.2.1.3.2.1
Cancel the common factor.
27(x-8)233=03
Step 1.3.3.2.2.1.3.2.2
Rewrite the expression.
27(x-8)2=03
27(x-8)2=03
27(x-8)2=03
27(x-8)2=03
27(x-8)2=03
Step 1.3.3.2.3
Simplify the right side.
Tap for more steps...
Step 1.3.3.2.3.1
Raising 0 to any positive power yields 0.
27(x-8)2=0
27(x-8)2=0
27(x-8)2=0
Step 1.3.3.3
Solve for x.
Tap for more steps...
Step 1.3.3.3.1
Divide each term in 27(x-8)2=0 by 27 and simplify.
Tap for more steps...
Step 1.3.3.3.1.1
Divide each term in 27(x-8)2=0 by 27.
27(x-8)227=027
Step 1.3.3.3.1.2
Simplify the left side.
Tap for more steps...
Step 1.3.3.3.1.2.1
Cancel the common factor of 27.
Tap for more steps...
Step 1.3.3.3.1.2.1.1
Cancel the common factor.
27(x-8)227=027
Step 1.3.3.3.1.2.1.2
Divide (x-8)2 by 1.
(x-8)2=027
(x-8)2=027
(x-8)2=027
Step 1.3.3.3.1.3
Simplify the right side.
Tap for more steps...
Step 1.3.3.3.1.3.1
Divide 0 by 27.
(x-8)2=0
(x-8)2=0
(x-8)2=0
Step 1.3.3.3.2
Set the x-8 equal to 0.
x-8=0
Step 1.3.3.3.3
Add 8 to both sides of the equation.
x=8
x=8
x=8
x=8
Step 1.4
Evaluate 3x-8-1 at each x value where the derivative is 0 or undefined.
Tap for more steps...
Step 1.4.1
Evaluate at x=8.
Tap for more steps...
Step 1.4.1.1
Substitute 8 for x.
3(8)-8-1
Step 1.4.1.2
Simplify.
Tap for more steps...
Step 1.4.1.2.1
Simplify each term.
Tap for more steps...
Step 1.4.1.2.1.1
Subtract 8 from 8.
30-1
Step 1.4.1.2.1.2
Rewrite 0 as 03.
303-1
Step 1.4.1.2.1.3
Pull terms out from under the radical, assuming real numbers.
0-1
0-1
Step 1.4.1.2.2
Subtract 1 from 0.
-1
-1
-1
Step 1.4.2
List all of the points.
(8,-1)
(8,-1)
(8,-1)
Step 2
Exclude the points that are not on the interval.
Step 3
Evaluate at the included endpoints.
Tap for more steps...
Step 3.1
Evaluate at x=0.
Tap for more steps...
Step 3.1.1
Substitute 0 for x.
3(0)-8-1
Step 3.1.2
Simplify.
Tap for more steps...
Step 3.1.2.1
Simplify each term.
Tap for more steps...
Step 3.1.2.1.1
Subtract 8 from 0.
3-8-1
Step 3.1.2.1.2
Rewrite -8 as (-2)3.
3(-2)3-1
Step 3.1.2.1.3
Pull terms out from under the radical, assuming real numbers.
-2-1
-2-1
Step 3.1.2.2
Subtract 1 from -2.
-3
-3
-3
Step 3.2
Evaluate at x=7.
Tap for more steps...
Step 3.2.1
Substitute 7 for x.
3(7)-8-1
Step 3.2.2
Simplify.
Tap for more steps...
Step 3.2.2.1
Simplify each term.
Tap for more steps...
Step 3.2.2.1.1
Subtract 8 from 7.
3-1-1
Step 3.2.2.1.2
Rewrite -1 as (-1)3.
3(-1)3-1
Step 3.2.2.1.3
Pull terms out from under the radical, assuming real numbers.
-1-1
-1-1
Step 3.2.2.2
Subtract 1 from -1.
-2
-2
-2
Step 3.3
List all of the points.
(0,-3),(7,-2)
(0,-3),(7,-2)
Step 4
Compare the f(x) values found for each value of x in order to determine the absolute maximum and minimum over the given interval. The maximum will occur at the highest f(x) value and the minimum will occur at the lowest f(x) value.
Absolute Maximum: (7,-2)
Absolute Minimum: (0,-3)
Step 5
 [x2  12  π  xdx ]