Enter a problem...
Calculus Examples
f(x)=x3-27xf(x)=x3−27x on -4−4 , 44
Step 1
Step 1.1
Find the first derivative.
Step 1.1.1
Find the first derivative.
Step 1.1.1.1
Differentiate.
Step 1.1.1.1.1
By the Sum Rule, the derivative of x3-27xx3−27x with respect to xx is ddx[x3]+ddx[-27x]ddx[x3]+ddx[−27x].
ddx[x3]+ddx[-27x]ddx[x3]+ddx[−27x]
Step 1.1.1.1.2
Differentiate using the Power Rule which states that ddx[xn]ddx[xn] is nxn-1nxn−1 where n=3n=3.
3x2+ddx[-27x]3x2+ddx[−27x]
3x2+ddx[-27x]3x2+ddx[−27x]
Step 1.1.1.2
Evaluate ddx[-27x]ddx[−27x].
Step 1.1.1.2.1
Since -27−27 is constant with respect to xx, the derivative of -27x−27x with respect to xx is -27ddx[x]−27ddx[x].
3x2-27ddx[x]3x2−27ddx[x]
Step 1.1.1.2.2
Differentiate using the Power Rule which states that ddx[xn]ddx[xn] is nxn-1nxn−1 where n=1n=1.
3x2-27⋅13x2−27⋅1
Step 1.1.1.2.3
Multiply -27−27 by 11.
f′(x)=3x2-27
f′(x)=3x2-27
f′(x)=3x2-27
Step 1.1.2
The first derivative of f(x) with respect to x is 3x2-27.
3x2-27
3x2-27
Step 1.2
Set the first derivative equal to 0 then solve the equation 3x2-27=0.
Step 1.2.1
Set the first derivative equal to 0.
3x2-27=0
Step 1.2.2
Add 27 to both sides of the equation.
3x2=27
Step 1.2.3
Divide each term in 3x2=27 by 3 and simplify.
Step 1.2.3.1
Divide each term in 3x2=27 by 3.
3x23=273
Step 1.2.3.2
Simplify the left side.
Step 1.2.3.2.1
Cancel the common factor of 3.
Step 1.2.3.2.1.1
Cancel the common factor.
3x23=273
Step 1.2.3.2.1.2
Divide x2 by 1.
x2=273
x2=273
x2=273
Step 1.2.3.3
Simplify the right side.
Step 1.2.3.3.1
Divide 27 by 3.
x2=9
x2=9
x2=9
Step 1.2.4
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
x=±√9
Step 1.2.5
Simplify ±√9.
Step 1.2.5.1
Rewrite 9 as 32.
x=±√32
Step 1.2.5.2
Pull terms out from under the radical, assuming positive real numbers.
x=±3
x=±3
Step 1.2.6
The complete solution is the result of both the positive and negative portions of the solution.
Step 1.2.6.1
First, use the positive value of the ± to find the first solution.
x=3
Step 1.2.6.2
Next, use the negative value of the ± to find the second solution.
x=-3
Step 1.2.6.3
The complete solution is the result of both the positive and negative portions of the solution.
x=3,-3
x=3,-3
x=3,-3
Step 1.3
Find the values where the derivative is undefined.
Step 1.3.1
The domain of the expression is all real numbers except where the expression is undefined. In this case, there is no real number that makes the expression undefined.
Step 1.4
Evaluate x3-27x at each x value where the derivative is 0 or undefined.
Step 1.4.1
Evaluate at x=3.
Step 1.4.1.1
Substitute 3 for x.
(3)3-27⋅3
Step 1.4.1.2
Simplify.
Step 1.4.1.2.1
Simplify each term.
Step 1.4.1.2.1.1
Raise 3 to the power of 3.
27-27⋅3
Step 1.4.1.2.1.2
Multiply -27 by 3.
27-81
27-81
Step 1.4.1.2.2
Subtract 81 from 27.
-54
-54
-54
Step 1.4.2
Evaluate at x=-3.
Step 1.4.2.1
Substitute -3 for x.
(-3)3-27⋅-3
Step 1.4.2.2
Simplify.
Step 1.4.2.2.1
Simplify each term.
Step 1.4.2.2.1.1
Raise -3 to the power of 3.
-27-27⋅-3
Step 1.4.2.2.1.2
Multiply -27 by -3.
-27+81
-27+81
Step 1.4.2.2.2
Add -27 and 81.
54
54
54
Step 1.4.3
List all of the points.
(3,-54),(-3,54)
(3,-54),(-3,54)
(3,-54),(-3,54)
Step 2
Step 2.1
Evaluate at x=-4.
Step 2.1.1
Substitute -4 for x.
(-4)3-27⋅-4
Step 2.1.2
Simplify.
Step 2.1.2.1
Simplify each term.
Step 2.1.2.1.1
Raise -4 to the power of 3.
-64-27⋅-4
Step 2.1.2.1.2
Multiply -27 by -4.
-64+108
-64+108
Step 2.1.2.2
Add -64 and 108.
44
44
44
Step 2.2
Evaluate at x=4.
Step 2.2.1
Substitute 4 for x.
(4)3-27⋅4
Step 2.2.2
Simplify.
Step 2.2.2.1
Simplify each term.
Step 2.2.2.1.1
Raise 4 to the power of 3.
64-27⋅4
Step 2.2.2.1.2
Multiply -27 by 4.
64-108
64-108
Step 2.2.2.2
Subtract 108 from 64.
-44
-44
-44
Step 2.3
List all of the points.
(-4,44),(4,-44)
(-4,44),(4,-44)
Step 3
Compare the f(x) values found for each value of x in order to determine the absolute maximum and minimum over the given interval. The maximum will occur at the highest f(x) value and the minimum will occur at the lowest f(x) value.
Absolute Maximum: (-3,54)
Absolute Minimum: (3,-54)
Step 4