Calculus Examples

Find the Absolute Max and Min over the Interval f(x)=x^3-6x^2+7 ; -1<=x<=6
f(x)=x3-6x2+7f(x)=x36x2+7 ; -1x61x6
Step 1
Find the critical points.
Tap for more steps...
Step 1.1
Find the first derivative.
Tap for more steps...
Step 1.1.1
Find the first derivative.
Tap for more steps...
Step 1.1.1.1
Differentiate.
Tap for more steps...
Step 1.1.1.1.1
By the Sum Rule, the derivative of x3-6x2+7x36x2+7 with respect to xx is ddx[x3]+ddx[-6x2]+ddx[7]ddx[x3]+ddx[6x2]+ddx[7].
ddx[x3]+ddx[-6x2]+ddx[7]ddx[x3]+ddx[6x2]+ddx[7]
Step 1.1.1.1.2
Differentiate using the Power Rule which states that ddx[xn]ddx[xn] is nxn-1nxn1 where n=3n=3.
3x2+ddx[-6x2]+ddx[7]3x2+ddx[6x2]+ddx[7]
3x2+ddx[-6x2]+ddx[7]3x2+ddx[6x2]+ddx[7]
Step 1.1.1.2
Evaluate ddx[-6x2]ddx[6x2].
Tap for more steps...
Step 1.1.1.2.1
Since -66 is constant with respect to xx, the derivative of -6x26x2 with respect to xx is -6ddx[x2]6ddx[x2].
3x2-6ddx[x2]+ddx[7]3x26ddx[x2]+ddx[7]
Step 1.1.1.2.2
Differentiate using the Power Rule which states that ddx[xn]ddx[xn] is nxn-1nxn1 where n=2n=2.
3x2-6(2x)+ddx[7]3x26(2x)+ddx[7]
Step 1.1.1.2.3
Multiply 22 by -66.
3x2-12x+ddx[7]3x212x+ddx[7]
3x2-12x+ddx[7]3x212x+ddx[7]
Step 1.1.1.3
Differentiate using the Constant Rule.
Tap for more steps...
Step 1.1.1.3.1
Since 77 is constant with respect to xx, the derivative of 77 with respect to xx is 00.
3x2-12x+03x212x+0
Step 1.1.1.3.2
Add 3x2-12x3x212x and 00.
f(x)=3x2-12x
f(x)=3x2-12x
f(x)=3x2-12x
Step 1.1.2
The first derivative of f(x) with respect to x is 3x2-12x.
3x2-12x
3x2-12x
Step 1.2
Set the first derivative equal to 0 then solve the equation 3x2-12x=0.
Tap for more steps...
Step 1.2.1
Set the first derivative equal to 0.
3x2-12x=0
Step 1.2.2
Factor 3x out of 3x2-12x.
Tap for more steps...
Step 1.2.2.1
Factor 3x out of 3x2.
3x(x)-12x=0
Step 1.2.2.2
Factor 3x out of -12x.
3x(x)+3x(-4)=0
Step 1.2.2.3
Factor 3x out of 3x(x)+3x(-4).
3x(x-4)=0
3x(x-4)=0
Step 1.2.3
If any individual factor on the left side of the equation is equal to 0, the entire expression will be equal to 0.
x=0
x-4=0
Step 1.2.4
Set x equal to 0.
x=0
Step 1.2.5
Set x-4 equal to 0 and solve for x.
Tap for more steps...
Step 1.2.5.1
Set x-4 equal to 0.
x-4=0
Step 1.2.5.2
Add 4 to both sides of the equation.
x=4
x=4
Step 1.2.6
The final solution is all the values that make 3x(x-4)=0 true.
x=0,4
x=0,4
Step 1.3
Find the values where the derivative is undefined.
Tap for more steps...
Step 1.3.1
The domain of the expression is all real numbers except where the expression is undefined. In this case, there is no real number that makes the expression undefined.
Step 1.4
Evaluate x3-6x2+7 at each x value where the derivative is 0 or undefined.
Tap for more steps...
Step 1.4.1
Evaluate at x=0.
Tap for more steps...
Step 1.4.1.1
Substitute 0 for x.
(0)3-6(0)2+7
Step 1.4.1.2
Simplify.
Tap for more steps...
Step 1.4.1.2.1
Simplify each term.
Tap for more steps...
Step 1.4.1.2.1.1
Raising 0 to any positive power yields 0.
0-6(0)2+7
Step 1.4.1.2.1.2
Raising 0 to any positive power yields 0.
0-60+7
Step 1.4.1.2.1.3
Multiply -6 by 0.
0+0+7
0+0+7
Step 1.4.1.2.2
Simplify by adding numbers.
Tap for more steps...
Step 1.4.1.2.2.1
Add 0 and 0.
0+7
Step 1.4.1.2.2.2
Add 0 and 7.
7
7
7
7
Step 1.4.2
Evaluate at x=4.
Tap for more steps...
Step 1.4.2.1
Substitute 4 for x.
(4)3-6(4)2+7
Step 1.4.2.2
Simplify.
Tap for more steps...
Step 1.4.2.2.1
Simplify each term.
Tap for more steps...
Step 1.4.2.2.1.1
Raise 4 to the power of 3.
64-6(4)2+7
Step 1.4.2.2.1.2
Raise 4 to the power of 2.
64-616+7
Step 1.4.2.2.1.3
Multiply -6 by 16.
64-96+7
64-96+7
Step 1.4.2.2.2
Simplify by adding and subtracting.
Tap for more steps...
Step 1.4.2.2.2.1
Subtract 96 from 64.
-32+7
Step 1.4.2.2.2.2
Add -32 and 7.
-25
-25
-25
-25
Step 1.4.3
List all of the points.
(0,7),(4,-25)
(0,7),(4,-25)
(0,7),(4,-25)
Step 2
Evaluate at the included endpoints.
Tap for more steps...
Step 2.1
Evaluate at x=-1.
Tap for more steps...
Step 2.1.1
Substitute -1 for x.
(-1)3-6(-1)2+7
Step 2.1.2
Simplify.
Tap for more steps...
Step 2.1.2.1
Simplify each term.
Tap for more steps...
Step 2.1.2.1.1
Raise -1 to the power of 3.
-1-6(-1)2+7
Step 2.1.2.1.2
Raise -1 to the power of 2.
-1-61+7
Step 2.1.2.1.3
Multiply -6 by 1.
-1-6+7
-1-6+7
Step 2.1.2.2
Simplify by adding and subtracting.
Tap for more steps...
Step 2.1.2.2.1
Subtract 6 from -1.
-7+7
Step 2.1.2.2.2
Add -7 and 7.
0
0
0
0
Step 2.2
Evaluate at x=6.
Tap for more steps...
Step 2.2.1
Substitute 6 for x.
(6)3-6(6)2+7
Step 2.2.2
Simplify.
Tap for more steps...
Step 2.2.2.1
Simplify each term.
Tap for more steps...
Step 2.2.2.1.1
Raise 6 to the power of 3.
216-6(6)2+7
Step 2.2.2.1.2
Raise 6 to the power of 2.
216-636+7
Step 2.2.2.1.3
Multiply -6 by 36.
216-216+7
216-216+7
Step 2.2.2.2
Simplify by adding and subtracting.
Tap for more steps...
Step 2.2.2.2.1
Subtract 216 from 216.
0+7
Step 2.2.2.2.2
Add 0 and 7.
7
7
7
7
Step 2.3
List all of the points.
(-1,0),(6,7)
(-1,0),(6,7)
Step 3
Compare the f(x) values found for each value of x in order to determine the absolute maximum and minimum over the given interval. The maximum will occur at the highest f(x) value and the minimum will occur at the lowest f(x) value.
Absolute Maximum: (0,7),(6,7)
Absolute Minimum: (4,-25)
Step 4
 [x2  12  π  xdx ]