Calculus Examples

Find the Absolute Max and Min over the Interval f(x)=x^3-3x^2+12 , (-2,4)
f(x)=x3-3x2+12f(x)=x33x2+12 , (-2,4)(2,4)
Step 1
Find the critical points.
Tap for more steps...
Step 1.1
Find the first derivative.
Tap for more steps...
Step 1.1.1
Find the first derivative.
Tap for more steps...
Step 1.1.1.1
Differentiate.
Tap for more steps...
Step 1.1.1.1.1
By the Sum Rule, the derivative of x3-3x2+12x33x2+12 with respect to xx is ddx[x3]+ddx[-3x2]+ddx[12]ddx[x3]+ddx[3x2]+ddx[12].
ddx[x3]+ddx[-3x2]+ddx[12]ddx[x3]+ddx[3x2]+ddx[12]
Step 1.1.1.1.2
Differentiate using the Power Rule which states that ddx[xn]ddx[xn] is nxn-1nxn1 where n=3n=3.
3x2+ddx[-3x2]+ddx[12]3x2+ddx[3x2]+ddx[12]
3x2+ddx[-3x2]+ddx[12]3x2+ddx[3x2]+ddx[12]
Step 1.1.1.2
Evaluate ddx[-3x2]ddx[3x2].
Tap for more steps...
Step 1.1.1.2.1
Since -33 is constant with respect to xx, the derivative of -3x23x2 with respect to xx is -3ddx[x2]3ddx[x2].
3x2-3ddx[x2]+ddx[12]3x23ddx[x2]+ddx[12]
Step 1.1.1.2.2
Differentiate using the Power Rule which states that ddx[xn]ddx[xn] is nxn-1nxn1 where n=2n=2.
3x2-3(2x)+ddx[12]3x23(2x)+ddx[12]
Step 1.1.1.2.3
Multiply 22 by -33.
3x2-6x+ddx[12]3x26x+ddx[12]
3x2-6x+ddx[12]3x26x+ddx[12]
Step 1.1.1.3
Differentiate using the Constant Rule.
Tap for more steps...
Step 1.1.1.3.1
Since 1212 is constant with respect to xx, the derivative of 1212 with respect to xx is 00.
3x2-6x+03x26x+0
Step 1.1.1.3.2
Add 3x2-6x3x26x and 00.
f(x)=3x2-6x
f(x)=3x2-6x
f(x)=3x2-6x
Step 1.1.2
The first derivative of f(x) with respect to x is 3x2-6x.
3x2-6x
3x2-6x
Step 1.2
Set the first derivative equal to 0 then solve the equation 3x2-6x=0.
Tap for more steps...
Step 1.2.1
Set the first derivative equal to 0.
3x2-6x=0
Step 1.2.2
Factor 3x out of 3x2-6x.
Tap for more steps...
Step 1.2.2.1
Factor 3x out of 3x2.
3x(x)-6x=0
Step 1.2.2.2
Factor 3x out of -6x.
3x(x)+3x(-2)=0
Step 1.2.2.3
Factor 3x out of 3x(x)+3x(-2).
3x(x-2)=0
3x(x-2)=0
Step 1.2.3
If any individual factor on the left side of the equation is equal to 0, the entire expression will be equal to 0.
x=0
x-2=0
Step 1.2.4
Set x equal to 0.
x=0
Step 1.2.5
Set x-2 equal to 0 and solve for x.
Tap for more steps...
Step 1.2.5.1
Set x-2 equal to 0.
x-2=0
Step 1.2.5.2
Add 2 to both sides of the equation.
x=2
x=2
Step 1.2.6
The final solution is all the values that make 3x(x-2)=0 true.
x=0,2
x=0,2
Step 1.3
Find the values where the derivative is undefined.
Tap for more steps...
Step 1.3.1
The domain of the expression is all real numbers except where the expression is undefined. In this case, there is no real number that makes the expression undefined.
Step 1.4
Evaluate x3-3x2+12 at each x value where the derivative is 0 or undefined.
Tap for more steps...
Step 1.4.1
Evaluate at x=0.
Tap for more steps...
Step 1.4.1.1
Substitute 0 for x.
(0)3-3(0)2+12
Step 1.4.1.2
Simplify.
Tap for more steps...
Step 1.4.1.2.1
Simplify each term.
Tap for more steps...
Step 1.4.1.2.1.1
Raising 0 to any positive power yields 0.
0-3(0)2+12
Step 1.4.1.2.1.2
Raising 0 to any positive power yields 0.
0-30+12
Step 1.4.1.2.1.3
Multiply -3 by 0.
0+0+12
0+0+12
Step 1.4.1.2.2
Simplify by adding numbers.
Tap for more steps...
Step 1.4.1.2.2.1
Add 0 and 0.
0+12
Step 1.4.1.2.2.2
Add 0 and 12.
12
12
12
12
Step 1.4.2
Evaluate at x=2.
Tap for more steps...
Step 1.4.2.1
Substitute 2 for x.
(2)3-3(2)2+12
Step 1.4.2.2
Simplify.
Tap for more steps...
Step 1.4.2.2.1
Simplify each term.
Tap for more steps...
Step 1.4.2.2.1.1
Raise 2 to the power of 3.
8-3(2)2+12
Step 1.4.2.2.1.2
Raise 2 to the power of 2.
8-34+12
Step 1.4.2.2.1.3
Multiply -3 by 4.
8-12+12
8-12+12
Step 1.4.2.2.2
Simplify by adding and subtracting.
Tap for more steps...
Step 1.4.2.2.2.1
Subtract 12 from 8.
-4+12
Step 1.4.2.2.2.2
Add -4 and 12.
8
8
8
8
Step 1.4.3
List all of the points.
(0,12),(2,8)
(0,12),(2,8)
(0,12),(2,8)
Step 2
Use the first derivative test to determine which points can be maxima or minima.
Tap for more steps...
Step 2.1
Split (-,) into separate intervals around the x values that make the first derivative 0 or undefined.
(-,0)(0,2)(2,)
Step 2.2
Substitute any number, such as -2, from the interval (-,0) in the first derivative 3x2-6x to check if the result is negative or positive.
Tap for more steps...
Step 2.2.1
Replace the variable x with -2 in the expression.
f(-2)=3(-2)2-6-2
Step 2.2.2
Simplify the result.
Tap for more steps...
Step 2.2.2.1
Simplify each term.
Tap for more steps...
Step 2.2.2.1.1
Raise -2 to the power of 2.
f(-2)=34-6-2
Step 2.2.2.1.2
Multiply 3 by 4.
f(-2)=12-6-2
Step 2.2.2.1.3
Multiply -6 by -2.
f(-2)=12+12
f(-2)=12+12
Step 2.2.2.2
Add 12 and 12.
f(-2)=24
Step 2.2.2.3
The final answer is 24.
24
24
24
Step 2.3
Substitute any number, such as 1, from the interval (0,2) in the first derivative 3x2-6x to check if the result is negative or positive.
Tap for more steps...
Step 2.3.1
Replace the variable x with 1 in the expression.
f(1)=3(1)2-61
Step 2.3.2
Simplify the result.
Tap for more steps...
Step 2.3.2.1
Simplify each term.
Tap for more steps...
Step 2.3.2.1.1
One to any power is one.
f(1)=31-61
Step 2.3.2.1.2
Multiply 3 by 1.
f(1)=3-61
Step 2.3.2.1.3
Multiply -6 by 1.
f(1)=3-6
f(1)=3-6
Step 2.3.2.2
Subtract 6 from 3.
f(1)=-3
Step 2.3.2.3
The final answer is -3.
-3
-3
-3
Step 2.4
Substitute any number, such as 4, from the interval (2,) in the first derivative 3x2-6x to check if the result is negative or positive.
Tap for more steps...
Step 2.4.1
Replace the variable x with 4 in the expression.
f(4)=3(4)2-64
Step 2.4.2
Simplify the result.
Tap for more steps...
Step 2.4.2.1
Simplify each term.
Tap for more steps...
Step 2.4.2.1.1
Raise 4 to the power of 2.
f(4)=316-64
Step 2.4.2.1.2
Multiply 3 by 16.
f(4)=48-64
Step 2.4.2.1.3
Multiply -6 by 4.
f(4)=48-24
f(4)=48-24
Step 2.4.2.2
Subtract 24 from 48.
f(4)=24
Step 2.4.2.3
The final answer is 24.
24
24
24
Step 2.5
Since the first derivative changed signs from positive to negative around x=0, then x=0 is a local maximum.
x=0 is a local maximum
Step 2.6
Since the first derivative changed signs from negative to positive around x=2, then x=2 is a local minimum.
x=2 is a local minimum
Step 2.7
These are the local extrema for f(x)=x3-3x2+12.
x=0 is a local maximum
x=2 is a local minimum
x=0 is a local maximum
x=2 is a local minimum
Step 3
Compare the f(x) values found for each value of x in order to determine the absolute maximum and minimum over the given interval. The maximum will occur at the highest f(x) value and the minimum will occur at the lowest f(x) value.
Absolute Maximum: (0,12)
Absolute Minimum: (2,8)
Step 4
 [x2  12  π  xdx ]