Enter a problem...
Calculus Examples
f(x)=x3-3x2+12f(x)=x3−3x2+12 , (-2,4)(−2,4)
Step 1
Step 1.1
Find the first derivative.
Step 1.1.1
Find the first derivative.
Step 1.1.1.1
Differentiate.
Step 1.1.1.1.1
By the Sum Rule, the derivative of x3-3x2+12x3−3x2+12 with respect to xx is ddx[x3]+ddx[-3x2]+ddx[12]ddx[x3]+ddx[−3x2]+ddx[12].
ddx[x3]+ddx[-3x2]+ddx[12]ddx[x3]+ddx[−3x2]+ddx[12]
Step 1.1.1.1.2
Differentiate using the Power Rule which states that ddx[xn]ddx[xn] is nxn-1nxn−1 where n=3n=3.
3x2+ddx[-3x2]+ddx[12]3x2+ddx[−3x2]+ddx[12]
3x2+ddx[-3x2]+ddx[12]3x2+ddx[−3x2]+ddx[12]
Step 1.1.1.2
Evaluate ddx[-3x2]ddx[−3x2].
Step 1.1.1.2.1
Since -3−3 is constant with respect to xx, the derivative of -3x2−3x2 with respect to xx is -3ddx[x2]−3ddx[x2].
3x2-3ddx[x2]+ddx[12]3x2−3ddx[x2]+ddx[12]
Step 1.1.1.2.2
Differentiate using the Power Rule which states that ddx[xn]ddx[xn] is nxn-1nxn−1 where n=2n=2.
3x2-3(2x)+ddx[12]3x2−3(2x)+ddx[12]
Step 1.1.1.2.3
Multiply 22 by -3−3.
3x2-6x+ddx[12]3x2−6x+ddx[12]
3x2-6x+ddx[12]3x2−6x+ddx[12]
Step 1.1.1.3
Differentiate using the Constant Rule.
Step 1.1.1.3.1
Since 1212 is constant with respect to xx, the derivative of 1212 with respect to xx is 00.
3x2-6x+03x2−6x+0
Step 1.1.1.3.2
Add 3x2-6x3x2−6x and 00.
f′(x)=3x2-6x
f′(x)=3x2-6x
f′(x)=3x2-6x
Step 1.1.2
The first derivative of f(x) with respect to x is 3x2-6x.
3x2-6x
3x2-6x
Step 1.2
Set the first derivative equal to 0 then solve the equation 3x2-6x=0.
Step 1.2.1
Set the first derivative equal to 0.
3x2-6x=0
Step 1.2.2
Factor 3x out of 3x2-6x.
Step 1.2.2.1
Factor 3x out of 3x2.
3x(x)-6x=0
Step 1.2.2.2
Factor 3x out of -6x.
3x(x)+3x(-2)=0
Step 1.2.2.3
Factor 3x out of 3x(x)+3x(-2).
3x(x-2)=0
3x(x-2)=0
Step 1.2.3
If any individual factor on the left side of the equation is equal to 0, the entire expression will be equal to 0.
x=0
x-2=0
Step 1.2.4
Set x equal to 0.
x=0
Step 1.2.5
Set x-2 equal to 0 and solve for x.
Step 1.2.5.1
Set x-2 equal to 0.
x-2=0
Step 1.2.5.2
Add 2 to both sides of the equation.
x=2
x=2
Step 1.2.6
The final solution is all the values that make 3x(x-2)=0 true.
x=0,2
x=0,2
Step 1.3
Find the values where the derivative is undefined.
Step 1.3.1
The domain of the expression is all real numbers except where the expression is undefined. In this case, there is no real number that makes the expression undefined.
Step 1.4
Evaluate x3-3x2+12 at each x value where the derivative is 0 or undefined.
Step 1.4.1
Evaluate at x=0.
Step 1.4.1.1
Substitute 0 for x.
(0)3-3(0)2+12
Step 1.4.1.2
Simplify.
Step 1.4.1.2.1
Simplify each term.
Step 1.4.1.2.1.1
Raising 0 to any positive power yields 0.
0-3(0)2+12
Step 1.4.1.2.1.2
Raising 0 to any positive power yields 0.
0-3⋅0+12
Step 1.4.1.2.1.3
Multiply -3 by 0.
0+0+12
0+0+12
Step 1.4.1.2.2
Simplify by adding numbers.
Step 1.4.1.2.2.1
Add 0 and 0.
0+12
Step 1.4.1.2.2.2
Add 0 and 12.
12
12
12
12
Step 1.4.2
Evaluate at x=2.
Step 1.4.2.1
Substitute 2 for x.
(2)3-3(2)2+12
Step 1.4.2.2
Simplify.
Step 1.4.2.2.1
Simplify each term.
Step 1.4.2.2.1.1
Raise 2 to the power of 3.
8-3(2)2+12
Step 1.4.2.2.1.2
Raise 2 to the power of 2.
8-3⋅4+12
Step 1.4.2.2.1.3
Multiply -3 by 4.
8-12+12
8-12+12
Step 1.4.2.2.2
Simplify by adding and subtracting.
Step 1.4.2.2.2.1
Subtract 12 from 8.
-4+12
Step 1.4.2.2.2.2
Add -4 and 12.
8
8
8
8
Step 1.4.3
List all of the points.
(0,12),(2,8)
(0,12),(2,8)
(0,12),(2,8)
Step 2
Step 2.1
Split (-∞,∞) into separate intervals around the x values that make the first derivative 0 or undefined.
(-∞,0)∪(0,2)∪(2,∞)
Step 2.2
Substitute any number, such as -2, from the interval (-∞,0) in the first derivative 3x2-6x to check if the result is negative or positive.
Step 2.2.1
Replace the variable x with -2 in the expression.
f′(-2)=3(-2)2-6⋅-2
Step 2.2.2
Simplify the result.
Step 2.2.2.1
Simplify each term.
Step 2.2.2.1.1
Raise -2 to the power of 2.
f′(-2)=3⋅4-6⋅-2
Step 2.2.2.1.2
Multiply 3 by 4.
f′(-2)=12-6⋅-2
Step 2.2.2.1.3
Multiply -6 by -2.
f′(-2)=12+12
f′(-2)=12+12
Step 2.2.2.2
Add 12 and 12.
f′(-2)=24
Step 2.2.2.3
The final answer is 24.
24
24
24
Step 2.3
Substitute any number, such as 1, from the interval (0,2) in the first derivative 3x2-6x to check if the result is negative or positive.
Step 2.3.1
Replace the variable x with 1 in the expression.
f′(1)=3(1)2-6⋅1
Step 2.3.2
Simplify the result.
Step 2.3.2.1
Simplify each term.
Step 2.3.2.1.1
One to any power is one.
f′(1)=3⋅1-6⋅1
Step 2.3.2.1.2
Multiply 3 by 1.
f′(1)=3-6⋅1
Step 2.3.2.1.3
Multiply -6 by 1.
f′(1)=3-6
f′(1)=3-6
Step 2.3.2.2
Subtract 6 from 3.
f′(1)=-3
Step 2.3.2.3
The final answer is -3.
-3
-3
-3
Step 2.4
Substitute any number, such as 4, from the interval (2,∞) in the first derivative 3x2-6x to check if the result is negative or positive.
Step 2.4.1
Replace the variable x with 4 in the expression.
f′(4)=3(4)2-6⋅4
Step 2.4.2
Simplify the result.
Step 2.4.2.1
Simplify each term.
Step 2.4.2.1.1
Raise 4 to the power of 2.
f′(4)=3⋅16-6⋅4
Step 2.4.2.1.2
Multiply 3 by 16.
f′(4)=48-6⋅4
Step 2.4.2.1.3
Multiply -6 by 4.
f′(4)=48-24
f′(4)=48-24
Step 2.4.2.2
Subtract 24 from 48.
f′(4)=24
Step 2.4.2.3
The final answer is 24.
24
24
24
Step 2.5
Since the first derivative changed signs from positive to negative around x=0, then x=0 is a local maximum.
x=0 is a local maximum
Step 2.6
Since the first derivative changed signs from negative to positive around x=2, then x=2 is a local minimum.
x=2 is a local minimum
Step 2.7
These are the local extrema for f(x)=x3-3x2+12.
x=0 is a local maximum
x=2 is a local minimum
x=0 is a local maximum
x=2 is a local minimum
Step 3
Compare the f(x) values found for each value of x in order to determine the absolute maximum and minimum over the given interval. The maximum will occur at the highest f(x) value and the minimum will occur at the lowest f(x) value.
Absolute Maximum: (0,12)
Absolute Minimum: (2,8)
Step 4