Calculus Examples

Find the Absolute Max and Min over the Interval f(x)=x^4+8x^3+18x^2+4 , [-4,1]
f(x)=x4+8x3+18x2+4f(x)=x4+8x3+18x2+4 , [-4,1][4,1]
Step 1
Find the critical points.
Tap for more steps...
Step 1.1
Find the first derivative.
Tap for more steps...
Step 1.1.1
Find the first derivative.
Tap for more steps...
Step 1.1.1.1
Differentiate.
Tap for more steps...
Step 1.1.1.1.1
By the Sum Rule, the derivative of x4+8x3+18x2+4x4+8x3+18x2+4 with respect to xx is ddx[x4]+ddx[8x3]+ddx[18x2]+ddx[4]ddx[x4]+ddx[8x3]+ddx[18x2]+ddx[4].
ddx[x4]+ddx[8x3]+ddx[18x2]+ddx[4]ddx[x4]+ddx[8x3]+ddx[18x2]+ddx[4]
Step 1.1.1.1.2
Differentiate using the Power Rule which states that ddx[xn]ddx[xn] is nxn-1nxn1 where n=4n=4.
4x3+ddx[8x3]+ddx[18x2]+ddx[4]4x3+ddx[8x3]+ddx[18x2]+ddx[4]
4x3+ddx[8x3]+ddx[18x2]+ddx[4]4x3+ddx[8x3]+ddx[18x2]+ddx[4]
Step 1.1.1.2
Evaluate ddx[8x3]ddx[8x3].
Tap for more steps...
Step 1.1.1.2.1
Since 88 is constant with respect to xx, the derivative of 8x38x3 with respect to xx is 8ddx[x3]8ddx[x3].
4x3+8ddx[x3]+ddx[18x2]+ddx[4]4x3+8ddx[x3]+ddx[18x2]+ddx[4]
Step 1.1.1.2.2
Differentiate using the Power Rule which states that ddx[xn]ddx[xn] is nxn-1nxn1 where n=3n=3.
4x3+8(3x2)+ddx[18x2]+ddx[4]4x3+8(3x2)+ddx[18x2]+ddx[4]
Step 1.1.1.2.3
Multiply 33 by 88.
4x3+24x2+ddx[18x2]+ddx[4]4x3+24x2+ddx[18x2]+ddx[4]
4x3+24x2+ddx[18x2]+ddx[4]4x3+24x2+ddx[18x2]+ddx[4]
Step 1.1.1.3
Evaluate ddx[18x2]ddx[18x2].
Tap for more steps...
Step 1.1.1.3.1
Since 1818 is constant with respect to xx, the derivative of 18x218x2 with respect to xx is 18ddx[x2]18ddx[x2].
4x3+24x2+18ddx[x2]+ddx[4]4x3+24x2+18ddx[x2]+ddx[4]
Step 1.1.1.3.2
Differentiate using the Power Rule which states that ddx[xn]ddx[xn] is nxn-1nxn1 where n=2n=2.
4x3+24x2+18(2x)+ddx[4]4x3+24x2+18(2x)+ddx[4]
Step 1.1.1.3.3
Multiply 22 by 1818.
4x3+24x2+36x+ddx[4]4x3+24x2+36x+ddx[4]
4x3+24x2+36x+ddx[4]4x3+24x2+36x+ddx[4]
Step 1.1.1.4
Differentiate using the Constant Rule.
Tap for more steps...
Step 1.1.1.4.1
Since 44 is constant with respect to xx, the derivative of 44 with respect to xx is 00.
4x3+24x2+36x+04x3+24x2+36x+0
Step 1.1.1.4.2
Add 4x3+24x2+36x4x3+24x2+36x and 00.
f(x)=4x3+24x2+36x
f(x)=4x3+24x2+36x
f(x)=4x3+24x2+36x
Step 1.1.2
The first derivative of f(x) with respect to x is 4x3+24x2+36x.
4x3+24x2+36x
4x3+24x2+36x
Step 1.2
Set the first derivative equal to 0 then solve the equation 4x3+24x2+36x=0.
Tap for more steps...
Step 1.2.1
Set the first derivative equal to 0.
4x3+24x2+36x=0
Step 1.2.2
Factor the left side of the equation.
Tap for more steps...
Step 1.2.2.1
Factor 4x out of 4x3+24x2+36x.
Tap for more steps...
Step 1.2.2.1.1
Factor 4x out of 4x3.
4x(x2)+24x2+36x=0
Step 1.2.2.1.2
Factor 4x out of 24x2.
4x(x2)+4x(6x)+36x=0
Step 1.2.2.1.3
Factor 4x out of 36x.
4x(x2)+4x(6x)+4x(9)=0
Step 1.2.2.1.4
Factor 4x out of 4x(x2)+4x(6x).
4x(x2+6x)+4x(9)=0
Step 1.2.2.1.5
Factor 4x out of 4x(x2+6x)+4x(9).
4x(x2+6x+9)=0
4x(x2+6x+9)=0
Step 1.2.2.2
Factor using the perfect square rule.
Tap for more steps...
Step 1.2.2.2.1
Rewrite 9 as 32.
4x(x2+6x+32)=0
Step 1.2.2.2.2
Check that the middle term is two times the product of the numbers being squared in the first term and third term.
6x=2x3
Step 1.2.2.2.3
Rewrite the polynomial.
4x(x2+2x3+32)=0
Step 1.2.2.2.4
Factor using the perfect square trinomial rule a2+2ab+b2=(a+b)2, where a=x and b=3.
4x(x+3)2=0
4x(x+3)2=0
4x(x+3)2=0
Step 1.2.3
If any individual factor on the left side of the equation is equal to 0, the entire expression will be equal to 0.
x=0
(x+3)2=0
Step 1.2.4
Set x equal to 0.
x=0
Step 1.2.5
Set (x+3)2 equal to 0 and solve for x.
Tap for more steps...
Step 1.2.5.1
Set (x+3)2 equal to 0.
(x+3)2=0
Step 1.2.5.2
Solve (x+3)2=0 for x.
Tap for more steps...
Step 1.2.5.2.1
Set the x+3 equal to 0.
x+3=0
Step 1.2.5.2.2
Subtract 3 from both sides of the equation.
x=-3
x=-3
x=-3
Step 1.2.6
The final solution is all the values that make 4x(x+3)2=0 true.
x=0,-3
x=0,-3
Step 1.3
Find the values where the derivative is undefined.
Tap for more steps...
Step 1.3.1
The domain of the expression is all real numbers except where the expression is undefined. In this case, there is no real number that makes the expression undefined.
Step 1.4
Evaluate x4+8x3+18x2+4 at each x value where the derivative is 0 or undefined.
Tap for more steps...
Step 1.4.1
Evaluate at x=0.
Tap for more steps...
Step 1.4.1.1
Substitute 0 for x.
(0)4+8(0)3+18(0)2+4
Step 1.4.1.2
Simplify.
Tap for more steps...
Step 1.4.1.2.1
Simplify each term.
Tap for more steps...
Step 1.4.1.2.1.1
Raising 0 to any positive power yields 0.
0+8(0)3+18(0)2+4
Step 1.4.1.2.1.2
Raising 0 to any positive power yields 0.
0+80+18(0)2+4
Step 1.4.1.2.1.3
Multiply 8 by 0.
0+0+18(0)2+4
Step 1.4.1.2.1.4
Raising 0 to any positive power yields 0.
0+0+180+4
Step 1.4.1.2.1.5
Multiply 18 by 0.
0+0+0+4
0+0+0+4
Step 1.4.1.2.2
Simplify by adding numbers.
Tap for more steps...
Step 1.4.1.2.2.1
Add 0 and 0.
0+0+4
Step 1.4.1.2.2.2
Add 0 and 0.
0+4
Step 1.4.1.2.2.3
Add 0 and 4.
4
4
4
4
Step 1.4.2
Evaluate at x=-3.
Tap for more steps...
Step 1.4.2.1
Substitute -3 for x.
(-3)4+8(-3)3+18(-3)2+4
Step 1.4.2.2
Simplify.
Tap for more steps...
Step 1.4.2.2.1
Simplify each term.
Tap for more steps...
Step 1.4.2.2.1.1
Raise -3 to the power of 4.
81+8(-3)3+18(-3)2+4
Step 1.4.2.2.1.2
Raise -3 to the power of 3.
81+8-27+18(-3)2+4
Step 1.4.2.2.1.3
Multiply 8 by -27.
81-216+18(-3)2+4
Step 1.4.2.2.1.4
Raise -3 to the power of 2.
81-216+189+4
Step 1.4.2.2.1.5
Multiply 18 by 9.
81-216+162+4
81-216+162+4
Step 1.4.2.2.2
Simplify by adding and subtracting.
Tap for more steps...
Step 1.4.2.2.2.1
Subtract 216 from 81.
-135+162+4
Step 1.4.2.2.2.2
Add -135 and 162.
27+4
Step 1.4.2.2.2.3
Add 27 and 4.
31
31
31
31
Step 1.4.3
List all of the points.
(0,4),(-3,31)
(0,4),(-3,31)
(0,4),(-3,31)
Step 2
Evaluate at the included endpoints.
Tap for more steps...
Step 2.1
Evaluate at x=-4.
Tap for more steps...
Step 2.1.1
Substitute -4 for x.
(-4)4+8(-4)3+18(-4)2+4
Step 2.1.2
Simplify.
Tap for more steps...
Step 2.1.2.1
Simplify each term.
Tap for more steps...
Step 2.1.2.1.1
Raise -4 to the power of 4.
256+8(-4)3+18(-4)2+4
Step 2.1.2.1.2
Raise -4 to the power of 3.
256+8-64+18(-4)2+4
Step 2.1.2.1.3
Multiply 8 by -64.
256-512+18(-4)2+4
Step 2.1.2.1.4
Raise -4 to the power of 2.
256-512+1816+4
Step 2.1.2.1.5
Multiply 18 by 16.
256-512+288+4
256-512+288+4
Step 2.1.2.2
Simplify by adding and subtracting.
Tap for more steps...
Step 2.1.2.2.1
Subtract 512 from 256.
-256+288+4
Step 2.1.2.2.2
Add -256 and 288.
32+4
Step 2.1.2.2.3
Add 32 and 4.
36
36
36
36
Step 2.2
Evaluate at x=1.
Tap for more steps...
Step 2.2.1
Substitute 1 for x.
(1)4+8(1)3+18(1)2+4
Step 2.2.2
Simplify.
Tap for more steps...
Step 2.2.2.1
Simplify each term.
Tap for more steps...
Step 2.2.2.1.1
One to any power is one.
1+8(1)3+18(1)2+4
Step 2.2.2.1.2
One to any power is one.
1+81+18(1)2+4
Step 2.2.2.1.3
Multiply 8 by 1.
1+8+18(1)2+4
Step 2.2.2.1.4
One to any power is one.
1+8+181+4
Step 2.2.2.1.5
Multiply 18 by 1.
1+8+18+4
1+8+18+4
Step 2.2.2.2
Simplify by adding numbers.
Tap for more steps...
Step 2.2.2.2.1
Add 1 and 8.
9+18+4
Step 2.2.2.2.2
Add 9 and 18.
27+4
Step 2.2.2.2.3
Add 27 and 4.
31
31
31
31
Step 2.3
List all of the points.
(-4,36),(1,31)
(-4,36),(1,31)
Step 3
Compare the f(x) values found for each value of x in order to determine the absolute maximum and minimum over the given interval. The maximum will occur at the highest f(x) value and the minimum will occur at the lowest f(x) value.
Absolute Maximum: (-4,36)
Absolute Minimum: (0,4)
Step 4
image of graph
(
(
)
)
|
|
[
[
]
]
7
7
8
8
9
9
°
°
θ
θ
4
4
5
5
6
6
/
/
^
^
×
×
>
>
π
π
1
1
2
2
3
3
-
-
+
+
÷
÷
<
<
!
!
,
,
0
0
.
.
%
%
=
=
 [x2  12  π  xdx ]