Enter a problem...
Calculus Examples
f(x)=xx2+1
Step 1
Step 1.1
Differentiate using the Quotient Rule which states that ddx[f(x)g(x)] is g(x)ddx[f(x)]-f(x)ddx[g(x)]g(x)2 where f(x)=x and g(x)=x2+1.
(x2+1)ddx[x]-xddx[x2+1](x2+1)2
Step 1.2
Differentiate.
Step 1.2.1
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=1.
(x2+1)⋅1-xddx[x2+1](x2+1)2
Step 1.2.2
Multiply x2+1 by 1.
x2+1-xddx[x2+1](x2+1)2
Step 1.2.3
By the Sum Rule, the derivative of x2+1 with respect to x is ddx[x2]+ddx[1].
x2+1-x(ddx[x2]+ddx[1])(x2+1)2
Step 1.2.4
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=2.
x2+1-x(2x+ddx[1])(x2+1)2
Step 1.2.5
Since 1 is constant with respect to x, the derivative of 1 with respect to x is 0.
x2+1-x(2x+0)(x2+1)2
Step 1.2.6
Simplify the expression.
Step 1.2.6.1
Add 2x and 0.
x2+1-x(2x)(x2+1)2
Step 1.2.6.2
Multiply 2 by -1.
x2+1-2x⋅x(x2+1)2
x2+1-2x⋅x(x2+1)2
x2+1-2x⋅x(x2+1)2
Step 1.3
Raise x to the power of 1.
x2+1-2(x1x)(x2+1)2
Step 1.4
Raise x to the power of 1.
x2+1-2(x1x1)(x2+1)2
Step 1.5
Use the power rule aman=am+n to combine exponents.
x2+1-2x1+1(x2+1)2
Step 1.6
Add 1 and 1.
x2+1-2x2(x2+1)2
Step 1.7
Subtract 2x2 from x2.
-x2+1(x2+1)2
-x2+1(x2+1)2
Step 2
Step 2.1
Differentiate using the Quotient Rule which states that ddx[f(x)g(x)] is g(x)ddx[f(x)]-f(x)ddx[g(x)]g(x)2 where f(x)=-x2+1 and g(x)=(x2+1)2.
f′′(x)=(x2+1)2ddx(-x2+1)-(-x2+1)ddx(x2+1)2((x2+1)2)2
Step 2.2
Differentiate.
Step 2.2.1
Multiply the exponents in ((x2+1)2)2.
Step 2.2.1.1
Apply the power rule and multiply exponents, (am)n=amn.
f′′(x)=(x2+1)2ddx(-x2+1)-(-x2+1)ddx(x2+1)2(x2+1)2⋅2
Step 2.2.1.2
Multiply 2 by 2.
f′′(x)=(x2+1)2ddx(-x2+1)-(-x2+1)ddx(x2+1)2(x2+1)4
f′′(x)=(x2+1)2ddx(-x2+1)-(-x2+1)ddx(x2+1)2(x2+1)4
Step 2.2.2
By the Sum Rule, the derivative of -x2+1 with respect to x is ddx[-x2]+ddx[1].
f′′(x)=(x2+1)2(ddx(-x2)+ddx(1))-(-x2+1)ddx(x2+1)2(x2+1)4
Step 2.2.3
Since -1 is constant with respect to x, the derivative of -x2 with respect to x is -ddx[x2].
f′′(x)=(x2+1)2(-ddxx2+ddx(1))-(-x2+1)ddx(x2+1)2(x2+1)4
Step 2.2.4
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=2.
f′′(x)=(x2+1)2(-(2x)+ddx(1))-(-x2+1)ddx(x2+1)2(x2+1)4
Step 2.2.5
Multiply 2 by -1.
f′′(x)=(x2+1)2(-2x+ddx(1))-(-x2+1)ddx(x2+1)2(x2+1)4
Step 2.2.6
Since 1 is constant with respect to x, the derivative of 1 with respect to x is 0.
f′′(x)=(x2+1)2(-2x+0)-(-x2+1)ddx(x2+1)2(x2+1)4
Step 2.2.7
Add -2x and 0.
f′′(x)=(x2+1)2(-2x)-(-x2+1)ddx(x2+1)2(x2+1)4
f′′(x)=(x2+1)2(-2x)-(-x2+1)ddx(x2+1)2(x2+1)4
Step 2.3
Differentiate using the chain rule, which states that ddx[f(g(x))] is f′(g(x))g′(x) where f(x)=x2 and g(x)=x2+1.
Step 2.3.1
To apply the Chain Rule, set u as x2+1.
f′′(x)=(x2+1)2(-2x)-(-x2+1)(ddu(u2)ddx(x2+1))(x2+1)4
Step 2.3.2
Differentiate using the Power Rule which states that ddu[un] is nun-1 where n=2.
f′′(x)=(x2+1)2(-2x)-(-x2+1)(2uddx(x2+1))(x2+1)4
Step 2.3.3
Replace all occurrences of u with x2+1.
f′′(x)=(x2+1)2(-2x)-(-x2+1)(2(x2+1)ddx(x2+1))(x2+1)4
f′′(x)=(x2+1)2(-2x)-(-x2+1)(2(x2+1)ddx(x2+1))(x2+1)4
Step 2.4
Differentiate.
Step 2.4.1
Multiply 2 by -1.
f′′(x)=(x2+1)2(-2x)-2(-x2+1)((x2+1)ddx(x2+1))(x2+1)4
Step 2.4.2
By the Sum Rule, the derivative of x2+1 with respect to x is ddx[x2]+ddx[1].
f′′(x)=(x2+1)2(-2x)-2(-x2+1)((x2+1)(ddx(x2)+ddx(1)))(x2+1)4
Step 2.4.3
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=2.
f′′(x)=(x2+1)2(-2x)-2(-x2+1)((x2+1)(2x+ddx(1)))(x2+1)4
Step 2.4.4
Since 1 is constant with respect to x, the derivative of 1 with respect to x is 0.
f′′(x)=(x2+1)2(-2x)-2(-x2+1)((x2+1)(2x+0))(x2+1)4
Step 2.4.5
Simplify the expression.
Step 2.4.5.1
Add 2x and 0.
f′′(x)=(x2+1)2(-2x)-2(-x2+1)((x2+1)(2x))(x2+1)4
Step 2.4.5.2
Move 2 to the left of x2+1.
f′′(x)=(x2+1)2(-2x)-2(-x2+1)(2⋅((x2+1)x))(x2+1)4
Step 2.4.5.3
Multiply 2 by -2.
f′′(x)=(x2+1)2(-2x)-4(-x2+1)((x2+1)x)(x2+1)4
f′′(x)=(x2+1)2(-2x)-4(-x2+1)((x2+1)x)(x2+1)4
f′′(x)=(x2+1)2(-2x)-4(-x2+1)((x2+1)x)(x2+1)4
Step 2.5
Simplify.
Step 2.5.1
Apply the distributive property.
f′′(x)=(x2+1)2(-2x)+(-4(-x2)-4⋅1)((x2+1)x)(x2+1)4
Step 2.5.2
Apply the distributive property.
f′′(x)=(x2+1)2(-2x)+(-4(-x2)-4⋅1)(x2x+1x)(x2+1)4
Step 2.5.3
Simplify the numerator.
Step 2.5.3.1
Simplify each term.
Step 2.5.3.1.1
Rewrite using the commutative property of multiplication.
f′′(x)=-2(x2+1)2x+(-4(-x2)-4⋅1)(x2x+1x)(x2+1)4
Step 2.5.3.1.2
Rewrite (x2+1)2 as (x2+1)(x2+1).
f′′(x)=-2((x2+1)(x2+1))x+(-4(-x2)-4⋅1)(x2x+1x)(x2+1)4
Step 2.5.3.1.3
Expand (x2+1)(x2+1) using the FOIL Method.
Step 2.5.3.1.3.1
Apply the distributive property.
f′′(x)=-2(x2(x2+1)+1(x2+1))x+(-4(-x2)-4⋅1)(x2x+1x)(x2+1)4
Step 2.5.3.1.3.2
Apply the distributive property.
f′′(x)=-2(x2x2+x2⋅1+1(x2+1))x+(-4(-x2)-4⋅1)(x2x+1x)(x2+1)4
Step 2.5.3.1.3.3
Apply the distributive property.
f′′(x)=-2(x2x2+x2⋅1+1x2+1⋅1)x+(-4(-x2)-4⋅1)(x2x+1x)(x2+1)4
f′′(x)=-2(x2x2+x2⋅1+1x2+1⋅1)x+(-4(-x2)-4⋅1)(x2x+1x)(x2+1)4
Step 2.5.3.1.4
Simplify and combine like terms.
Step 2.5.3.1.4.1
Simplify each term.
Step 2.5.3.1.4.1.1
Multiply x2 by x2 by adding the exponents.
Step 2.5.3.1.4.1.1.1
Use the power rule aman=am+n to combine exponents.
f′′(x)=-2(x2+2+x2⋅1+1x2+1⋅1)x+(-4(-x2)-4⋅1)(x2x+1x)(x2+1)4
Step 2.5.3.1.4.1.1.2
Add 2 and 2.
f′′(x)=-2(x4+x2⋅1+1x2+1⋅1)x+(-4(-x2)-4⋅1)(x2x+1x)(x2+1)4
f′′(x)=-2(x4+x2⋅1+1x2+1⋅1)x+(-4(-x2)-4⋅1)(x2x+1x)(x2+1)4
Step 2.5.3.1.4.1.2
Multiply x2 by 1.
f′′(x)=-2(x4+x2+1x2+1⋅1)x+(-4(-x2)-4⋅1)(x2x+1x)(x2+1)4
Step 2.5.3.1.4.1.3
Multiply x2 by 1.
f′′(x)=-2(x4+x2+x2+1⋅1)x+(-4(-x2)-4⋅1)(x2x+1x)(x2+1)4
Step 2.5.3.1.4.1.4
Multiply 1 by 1.
f′′(x)=-2(x4+x2+x2+1)x+(-4(-x2)-4⋅1)(x2x+1x)(x2+1)4
f′′(x)=-2(x4+x2+x2+1)x+(-4(-x2)-4⋅1)(x2x+1x)(x2+1)4
Step 2.5.3.1.4.2
Add x2 and x2.
f′′(x)=-2(x4+2x2+1)x+(-4(-x2)-4⋅1)(x2x+1x)(x2+1)4
f′′(x)=-2(x4+2x2+1)x+(-4(-x2)-4⋅1)(x2x+1x)(x2+1)4
Step 2.5.3.1.5
Apply the distributive property.
f′′(x)=(-2x4-2(2x2)-2⋅1)x+(-4(-x2)-4⋅1)(x2x+1x)(x2+1)4
Step 2.5.3.1.6
Simplify.
Step 2.5.3.1.6.1
Multiply 2 by -2.
f′′(x)=(-2x4-4x2-2⋅1)x+(-4(-x2)-4⋅1)(x2x+1x)(x2+1)4
Step 2.5.3.1.6.2
Multiply -2 by 1.
f′′(x)=(-2x4-4x2-2)x+(-4(-x2)-4⋅1)(x2x+1x)(x2+1)4
f′′(x)=(-2x4-4x2-2)x+(-4(-x2)-4⋅1)(x2x+1x)(x2+1)4
Step 2.5.3.1.7
Apply the distributive property.
f′′(x)=-2x4x-4x2x-2x+(-4(-x2)-4⋅1)(x2x+1x)(x2+1)4
Step 2.5.3.1.8
Simplify.
Step 2.5.3.1.8.1
Multiply x4 by x by adding the exponents.
Step 2.5.3.1.8.1.1
Move x.
f′′(x)=-2(x⋅x4)-4x2x-2x+(-4(-x2)-4⋅1)(x2x+1x)(x2+1)4
Step 2.5.3.1.8.1.2
Multiply x by x4.
Step 2.5.3.1.8.1.2.1
Raise x to the power of 1.
f′′(x)=-2(x⋅x4)-4x2x-2x+(-4(-x2)-4⋅1)(x2x+1x)(x2+1)4
Step 2.5.3.1.8.1.2.2
Use the power rule aman=am+n to combine exponents.
f′′(x)=-2x1+4-4x2x-2x+(-4(-x2)-4⋅1)(x2x+1x)(x2+1)4
f′′(x)=-2x1+4-4x2x-2x+(-4(-x2)-4⋅1)(x2x+1x)(x2+1)4
Step 2.5.3.1.8.1.3
Add 1 and 4.
f′′(x)=-2x5-4x2x-2x+(-4(-x2)-4⋅1)(x2x+1x)(x2+1)4
f′′(x)=-2x5-4x2x-2x+(-4(-x2)-4⋅1)(x2x+1x)(x2+1)4
Step 2.5.3.1.8.2
Multiply x2 by x by adding the exponents.
Step 2.5.3.1.8.2.1
Move x.
f′′(x)=-2x5-4(x⋅x2)-2x+(-4(-x2)-4⋅1)(x2x+1x)(x2+1)4
Step 2.5.3.1.8.2.2
Multiply x by x2.
Step 2.5.3.1.8.2.2.1
Raise x to the power of 1.
f′′(x)=-2x5-4(x⋅x2)-2x+(-4(-x2)-4⋅1)(x2x+1x)(x2+1)4
Step 2.5.3.1.8.2.2.2
Use the power rule aman=am+n to combine exponents.
f′′(x)=-2x5-4x1+2-2x+(-4(-x2)-4⋅1)(x2x+1x)(x2+1)4
f′′(x)=-2x5-4x1+2-2x+(-4(-x2)-4⋅1)(x2x+1x)(x2+1)4
Step 2.5.3.1.8.2.3
Add 1 and 2.
f′′(x)=-2x5-4x3-2x+(-4(-x2)-4⋅1)(x2x+1x)(x2+1)4
f′′(x)=-2x5-4x3-2x+(-4(-x2)-4⋅1)(x2x+1x)(x2+1)4
f′′(x)=-2x5-4x3-2x+(-4(-x2)-4⋅1)(x2x+1x)(x2+1)4
Step 2.5.3.1.9
Simplify each term.
Step 2.5.3.1.9.1
Multiply -1 by -4.
f′′(x)=-2x5-4x3-2x+(4x2-4⋅1)(x2x+1x)(x2+1)4
Step 2.5.3.1.9.2
Multiply -4 by 1.
f′′(x)=-2x5-4x3-2x+(4x2-4)(x2x+1x)(x2+1)4
f′′(x)=-2x5-4x3-2x+(4x2-4)(x2x+1x)(x2+1)4
Step 2.5.3.1.10
Simplify each term.
Step 2.5.3.1.10.1
Multiply x2 by x by adding the exponents.
Step 2.5.3.1.10.1.1
Multiply x2 by x.
Step 2.5.3.1.10.1.1.1
Raise x to the power of 1.
f′′(x)=-2x5-4x3-2x+(4x2-4)(x2x+1x)(x2+1)4
Step 2.5.3.1.10.1.1.2
Use the power rule aman=am+n to combine exponents.
f′′(x)=-2x5-4x3-2x+(4x2-4)(x2+1+1x)(x2+1)4
f′′(x)=-2x5-4x3-2x+(4x2-4)(x2+1+1x)(x2+1)4
Step 2.5.3.1.10.1.2
Add 2 and 1.
f′′(x)=-2x5-4x3-2x+(4x2-4)(x3+1x)(x2+1)4
f′′(x)=-2x5-4x3-2x+(4x2-4)(x3+1x)(x2+1)4
Step 2.5.3.1.10.2
Multiply x by 1.
f′′(x)=-2x5-4x3-2x+(4x2-4)(x3+x)(x2+1)4
f′′(x)=-2x5-4x3-2x+(4x2-4)(x3+x)(x2+1)4
Step 2.5.3.1.11
Expand (4x2-4)(x3+x) using the FOIL Method.
Step 2.5.3.1.11.1
Apply the distributive property.
f′′(x)=-2x5-4x3-2x+4x2(x3+x)-4(x3+x)(x2+1)4
Step 2.5.3.1.11.2
Apply the distributive property.
f′′(x)=-2x5-4x3-2x+4x2x3+4x2x-4(x3+x)(x2+1)4
Step 2.5.3.1.11.3
Apply the distributive property.
f′′(x)=-2x5-4x3-2x+4x2x3+4x2x-4x3-4x(x2+1)4
f′′(x)=-2x5-4x3-2x+4x2x3+4x2x-4x3-4x(x2+1)4
Step 2.5.3.1.12
Simplify and combine like terms.
Step 2.5.3.1.12.1
Simplify each term.
Step 2.5.3.1.12.1.1
Multiply x2 by x3 by adding the exponents.
Step 2.5.3.1.12.1.1.1
Move x3.
f′′(x)=-2x5-4x3-2x+4(x3x2)+4x2x-4x3-4x(x2+1)4
Step 2.5.3.1.12.1.1.2
Use the power rule aman=am+n to combine exponents.
f′′(x)=-2x5-4x3-2x+4x3+2+4x2x-4x3-4x(x2+1)4
Step 2.5.3.1.12.1.1.3
Add 3 and 2.
f′′(x)=-2x5-4x3-2x+4x5+4x2x-4x3-4x(x2+1)4
f′′(x)=-2x5-4x3-2x+4x5+4x2x-4x3-4x(x2+1)4
Step 2.5.3.1.12.1.2
Multiply x2 by x by adding the exponents.
Step 2.5.3.1.12.1.2.1
Move x.
f′′(x)=-2x5-4x3-2x+4x5+4(x⋅x2)-4x3-4x(x2+1)4
Step 2.5.3.1.12.1.2.2
Multiply x by x2.
Step 2.5.3.1.12.1.2.2.1
Raise x to the power of 1.
f′′(x)=-2x5-4x3-2x+4x5+4(x⋅x2)-4x3-4x(x2+1)4
Step 2.5.3.1.12.1.2.2.2
Use the power rule aman=am+n to combine exponents.
f′′(x)=-2x5-4x3-2x+4x5+4x1+2-4x3-4x(x2+1)4
f′′(x)=-2x5-4x3-2x+4x5+4x1+2-4x3-4x(x2+1)4
Step 2.5.3.1.12.1.2.3
Add 1 and 2.
f′′(x)=-2x5-4x3-2x+4x5+4x3-4x3-4x(x2+1)4
f′′(x)=-2x5-4x3-2x+4x5+4x3-4x3-4x(x2+1)4
f′′(x)=-2x5-4x3-2x+4x5+4x3-4x3-4x(x2+1)4
Step 2.5.3.1.12.2
Subtract 4x3 from 4x3.
f′′(x)=-2x5-4x3-2x+4x5+0-4x(x2+1)4
Step 2.5.3.1.12.3
Add 4x5 and 0.
f′′(x)=-2x5-4x3-2x+4x5-4x(x2+1)4
f′′(x)=-2x5-4x3-2x+4x5-4x(x2+1)4
f′′(x)=-2x5-4x3-2x+4x5-4x(x2+1)4
Step 2.5.3.2
Add -2x5 and 4x5.
f′′(x)=2x5-4x3-2x-4x(x2+1)4
Step 2.5.3.3
Subtract 4x from -2x.
f′′(x)=2x5-4x3-6x(x2+1)4
f′′(x)=2x5-4x3-6x(x2+1)4
Step 2.5.4
Simplify the numerator.
Step 2.5.4.1
Factor 2x out of 2x5-4x3-6x.
Step 2.5.4.1.1
Factor 2x out of 2x5.
f′′(x)=2x(x4)-4x3-6x(x2+1)4
Step 2.5.4.1.2
Factor 2x out of -4x3.
f′′(x)=2x(x4)+2x(-2x2)-6x(x2+1)4
Step 2.5.4.1.3
Factor 2x out of -6x.
f′′(x)=2x(x4)+2x(-2x2)+2x(-3)(x2+1)4
Step 2.5.4.1.4
Factor 2x out of 2x(x4)+2x(-2x2).
f′′(x)=2x(x4-2x2)+2x(-3)(x2+1)4
Step 2.5.4.1.5
Factor 2x out of 2x(x4-2x2)+2x(-3).
f′′(x)=2x(x4-2x2-3)(x2+1)4
f′′(x)=2x(x4-2x2-3)(x2+1)4
Step 2.5.4.2
Rewrite x4 as (x2)2.
f′′(x)=2x((x2)2-2x2-3)(x2+1)4
Step 2.5.4.3
Let u=x2. Substitute u for all occurrences of x2.
f′′(x)=2x(u2-2u-3)(x2+1)4
Step 2.5.4.4
Factor u2-2u-3 using the AC method.
Step 2.5.4.4.1
Consider the form x2+bx+c. Find a pair of integers whose product is c and whose sum is b. In this case, whose product is -3 and whose sum is -2.
-3,1
Step 2.5.4.4.2
Write the factored form using these integers.
f′′(x)=2x((u-3)(u+1))(x2+1)4
f′′(x)=2x((u-3)(u+1))(x2+1)4
Step 2.5.4.5
Replace all occurrences of u with x2.
f′′(x)=2x(x2-3)(x2+1)(x2+1)4
f′′(x)=2x(x2-3)(x2+1)(x2+1)4
Step 2.5.5
Cancel the common factor of x2+1 and (x2+1)4.
Step 2.5.5.1
Factor x2+1 out of 2x(x2-3)(x2+1).
f′′(x)=(x2+1)(2x(x2-3))(x2+1)4
Step 2.5.5.2
Cancel the common factors.
Step 2.5.5.2.1
Factor x2+1 out of (x2+1)4.
f′′(x)=(x2+1)(2x(x2-3))(x2+1)(x2+1)3
Step 2.5.5.2.2
Cancel the common factor.
f′′(x)=(x2+1)(2x(x2-3))(x2+1)(x2+1)3
Step 2.5.5.2.3
Rewrite the expression.
f′′(x)=2x(x2-3)(x2+1)3
f′′(x)=2x(x2-3)(x2+1)3
f′′(x)=2x(x2-3)(x2+1)3
f′′(x)=2x(x2-3)(x2+1)3
f′′(x)=2x(x2-3)(x2+1)3
Step 3
To find the local maximum and minimum values of the function, set the derivative equal to 0 and solve.
-x2+1(x2+1)2=0
Step 4
Step 4.1
Find the first derivative.
Step 4.1.1
Differentiate using the Quotient Rule which states that ddx[f(x)g(x)] is g(x)ddx[f(x)]-f(x)ddx[g(x)]g(x)2 where f(x)=x and g(x)=x2+1.
(x2+1)ddx[x]-xddx[x2+1](x2+1)2
Step 4.1.2
Differentiate.
Step 4.1.2.1
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=1.
(x2+1)⋅1-xddx[x2+1](x2+1)2
Step 4.1.2.2
Multiply x2+1 by 1.
x2+1-xddx[x2+1](x2+1)2
Step 4.1.2.3
By the Sum Rule, the derivative of x2+1 with respect to x is ddx[x2]+ddx[1].
x2+1-x(ddx[x2]+ddx[1])(x2+1)2
Step 4.1.2.4
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=2.
x2+1-x(2x+ddx[1])(x2+1)2
Step 4.1.2.5
Since 1 is constant with respect to x, the derivative of 1 with respect to x is 0.
x2+1-x(2x+0)(x2+1)2
Step 4.1.2.6
Simplify the expression.
Step 4.1.2.6.1
Add 2x and 0.
x2+1-x(2x)(x2+1)2
Step 4.1.2.6.2
Multiply 2 by -1.
x2+1-2x⋅x(x2+1)2
x2+1-2x⋅x(x2+1)2
x2+1-2x⋅x(x2+1)2
Step 4.1.3
Raise x to the power of 1.
x2+1-2(x1x)(x2+1)2
Step 4.1.4
Raise to the power of .
Step 4.1.5
Use the power rule to combine exponents.
Step 4.1.6
Add and .
Step 4.1.7
Subtract from .
Step 4.2
The first derivative of with respect to is .
Step 5
Step 5.1
Set the first derivative equal to .
Step 5.2
Set the numerator equal to zero.
Step 5.3
Solve the equation for .
Step 5.3.1
Subtract from both sides of the equation.
Step 5.3.2
Divide each term in by and simplify.
Step 5.3.2.1
Divide each term in by .
Step 5.3.2.2
Simplify the left side.
Step 5.3.2.2.1
Dividing two negative values results in a positive value.
Step 5.3.2.2.2
Divide by .
Step 5.3.2.3
Simplify the right side.
Step 5.3.2.3.1
Divide by .
Step 5.3.3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Step 5.3.4
Any root of is .
Step 5.3.5
The complete solution is the result of both the positive and negative portions of the solution.
Step 5.3.5.1
First, use the positive value of the to find the first solution.
Step 5.3.5.2
Next, use the negative value of the to find the second solution.
Step 5.3.5.3
The complete solution is the result of both the positive and negative portions of the solution.
Step 6
Step 6.1
The domain of the expression is all real numbers except where the expression is undefined. In this case, there is no real number that makes the expression undefined.
Step 7
Critical points to evaluate.
Step 8
Evaluate the second derivative at . If the second derivative is positive, then this is a local minimum. If it is negative, then this is a local maximum.
Step 9
Step 9.1
Multiply by .
Step 9.2
Simplify the denominator.
Step 9.2.1
One to any power is one.
Step 9.2.2
Add and .
Step 9.2.3
Raise to the power of .
Step 9.3
Simplify the numerator.
Step 9.3.1
One to any power is one.
Step 9.3.2
Subtract from .
Step 9.4
Reduce the expression by cancelling the common factors.
Step 9.4.1
Multiply by .
Step 9.4.2
Cancel the common factor of and .
Step 9.4.2.1
Factor out of .
Step 9.4.2.2
Cancel the common factors.
Step 9.4.2.2.1
Factor out of .
Step 9.4.2.2.2
Cancel the common factor.
Step 9.4.2.2.3
Rewrite the expression.
Step 9.4.3
Move the negative in front of the fraction.
Step 10
is a local maximum because the value of the second derivative is negative. This is referred to as the second derivative test.
is a local maximum
Step 11
Step 11.1
Replace the variable with in the expression.
Step 11.2
Simplify the result.
Step 11.2.1
Simplify the denominator.
Step 11.2.1.1
One to any power is one.
Step 11.2.1.2
Add and .
Step 11.2.2
The final answer is .
Step 12
Evaluate the second derivative at . If the second derivative is positive, then this is a local minimum. If it is negative, then this is a local maximum.
Step 13
Step 13.1
Multiply by .
Step 13.2
Simplify the denominator.
Step 13.2.1
Raise to the power of .
Step 13.2.2
Add and .
Step 13.2.3
Raise to the power of .
Step 13.3
Simplify the numerator.
Step 13.3.1
Raise to the power of .
Step 13.3.2
Subtract from .
Step 13.4
Reduce the expression by cancelling the common factors.
Step 13.4.1
Multiply by .
Step 13.4.2
Cancel the common factor of and .
Step 13.4.2.1
Factor out of .
Step 13.4.2.2
Cancel the common factors.
Step 13.4.2.2.1
Factor out of .
Step 13.4.2.2.2
Cancel the common factor.
Step 13.4.2.2.3
Rewrite the expression.
Step 14
is a local minimum because the value of the second derivative is positive. This is referred to as the second derivative test.
is a local minimum
Step 15
Step 15.1
Replace the variable with in the expression.
Step 15.2
Simplify the result.
Step 15.2.1
Simplify the denominator.
Step 15.2.1.1
Raise to the power of .
Step 15.2.1.2
Add and .
Step 15.2.2
Move the negative in front of the fraction.
Step 15.2.3
The final answer is .
Step 16
These are the local extrema for .
is a local maxima
is a local minima
Step 17