Calculus Examples

Find the Absolute Max and Min over the Interval f(x)=x/(x^2+1)
f(x)=xx2+1
Step 1
Find the first derivative of the function.
Tap for more steps...
Step 1.1
Differentiate using the Quotient Rule which states that ddx[f(x)g(x)] is g(x)ddx[f(x)]-f(x)ddx[g(x)]g(x)2 where f(x)=x and g(x)=x2+1.
(x2+1)ddx[x]-xddx[x2+1](x2+1)2
Step 1.2
Differentiate.
Tap for more steps...
Step 1.2.1
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=1.
(x2+1)1-xddx[x2+1](x2+1)2
Step 1.2.2
Multiply x2+1 by 1.
x2+1-xddx[x2+1](x2+1)2
Step 1.2.3
By the Sum Rule, the derivative of x2+1 with respect to x is ddx[x2]+ddx[1].
x2+1-x(ddx[x2]+ddx[1])(x2+1)2
Step 1.2.4
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=2.
x2+1-x(2x+ddx[1])(x2+1)2
Step 1.2.5
Since 1 is constant with respect to x, the derivative of 1 with respect to x is 0.
x2+1-x(2x+0)(x2+1)2
Step 1.2.6
Simplify the expression.
Tap for more steps...
Step 1.2.6.1
Add 2x and 0.
x2+1-x(2x)(x2+1)2
Step 1.2.6.2
Multiply 2 by -1.
x2+1-2xx(x2+1)2
x2+1-2xx(x2+1)2
x2+1-2xx(x2+1)2
Step 1.3
Raise x to the power of 1.
x2+1-2(x1x)(x2+1)2
Step 1.4
Raise x to the power of 1.
x2+1-2(x1x1)(x2+1)2
Step 1.5
Use the power rule aman=am+n to combine exponents.
x2+1-2x1+1(x2+1)2
Step 1.6
Add 1 and 1.
x2+1-2x2(x2+1)2
Step 1.7
Subtract 2x2 from x2.
-x2+1(x2+1)2
-x2+1(x2+1)2
Step 2
Find the second derivative of the function.
Tap for more steps...
Step 2.1
Differentiate using the Quotient Rule which states that ddx[f(x)g(x)] is g(x)ddx[f(x)]-f(x)ddx[g(x)]g(x)2 where f(x)=-x2+1 and g(x)=(x2+1)2.
f′′(x)=(x2+1)2ddx(-x2+1)-(-x2+1)ddx(x2+1)2((x2+1)2)2
Step 2.2
Differentiate.
Tap for more steps...
Step 2.2.1
Multiply the exponents in ((x2+1)2)2.
Tap for more steps...
Step 2.2.1.1
Apply the power rule and multiply exponents, (am)n=amn.
f′′(x)=(x2+1)2ddx(-x2+1)-(-x2+1)ddx(x2+1)2(x2+1)22
Step 2.2.1.2
Multiply 2 by 2.
f′′(x)=(x2+1)2ddx(-x2+1)-(-x2+1)ddx(x2+1)2(x2+1)4
f′′(x)=(x2+1)2ddx(-x2+1)-(-x2+1)ddx(x2+1)2(x2+1)4
Step 2.2.2
By the Sum Rule, the derivative of -x2+1 with respect to x is ddx[-x2]+ddx[1].
f′′(x)=(x2+1)2(ddx(-x2)+ddx(1))-(-x2+1)ddx(x2+1)2(x2+1)4
Step 2.2.3
Since -1 is constant with respect to x, the derivative of -x2 with respect to x is -ddx[x2].
f′′(x)=(x2+1)2(-ddxx2+ddx(1))-(-x2+1)ddx(x2+1)2(x2+1)4
Step 2.2.4
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=2.
f′′(x)=(x2+1)2(-(2x)+ddx(1))-(-x2+1)ddx(x2+1)2(x2+1)4
Step 2.2.5
Multiply 2 by -1.
f′′(x)=(x2+1)2(-2x+ddx(1))-(-x2+1)ddx(x2+1)2(x2+1)4
Step 2.2.6
Since 1 is constant with respect to x, the derivative of 1 with respect to x is 0.
f′′(x)=(x2+1)2(-2x+0)-(-x2+1)ddx(x2+1)2(x2+1)4
Step 2.2.7
Add -2x and 0.
f′′(x)=(x2+1)2(-2x)-(-x2+1)ddx(x2+1)2(x2+1)4
f′′(x)=(x2+1)2(-2x)-(-x2+1)ddx(x2+1)2(x2+1)4
Step 2.3
Differentiate using the chain rule, which states that ddx[f(g(x))] is f(g(x))g(x) where f(x)=x2 and g(x)=x2+1.
Tap for more steps...
Step 2.3.1
To apply the Chain Rule, set u as x2+1.
f′′(x)=(x2+1)2(-2x)-(-x2+1)(ddu(u2)ddx(x2+1))(x2+1)4
Step 2.3.2
Differentiate using the Power Rule which states that ddu[un] is nun-1 where n=2.
f′′(x)=(x2+1)2(-2x)-(-x2+1)(2uddx(x2+1))(x2+1)4
Step 2.3.3
Replace all occurrences of u with x2+1.
f′′(x)=(x2+1)2(-2x)-(-x2+1)(2(x2+1)ddx(x2+1))(x2+1)4
f′′(x)=(x2+1)2(-2x)-(-x2+1)(2(x2+1)ddx(x2+1))(x2+1)4
Step 2.4
Differentiate.
Tap for more steps...
Step 2.4.1
Multiply 2 by -1.
f′′(x)=(x2+1)2(-2x)-2(-x2+1)((x2+1)ddx(x2+1))(x2+1)4
Step 2.4.2
By the Sum Rule, the derivative of x2+1 with respect to x is ddx[x2]+ddx[1].
f′′(x)=(x2+1)2(-2x)-2(-x2+1)((x2+1)(ddx(x2)+ddx(1)))(x2+1)4
Step 2.4.3
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=2.
f′′(x)=(x2+1)2(-2x)-2(-x2+1)((x2+1)(2x+ddx(1)))(x2+1)4
Step 2.4.4
Since 1 is constant with respect to x, the derivative of 1 with respect to x is 0.
f′′(x)=(x2+1)2(-2x)-2(-x2+1)((x2+1)(2x+0))(x2+1)4
Step 2.4.5
Simplify the expression.
Tap for more steps...
Step 2.4.5.1
Add 2x and 0.
f′′(x)=(x2+1)2(-2x)-2(-x2+1)((x2+1)(2x))(x2+1)4
Step 2.4.5.2
Move 2 to the left of x2+1.
f′′(x)=(x2+1)2(-2x)-2(-x2+1)(2((x2+1)x))(x2+1)4
Step 2.4.5.3
Multiply 2 by -2.
f′′(x)=(x2+1)2(-2x)-4(-x2+1)((x2+1)x)(x2+1)4
f′′(x)=(x2+1)2(-2x)-4(-x2+1)((x2+1)x)(x2+1)4
f′′(x)=(x2+1)2(-2x)-4(-x2+1)((x2+1)x)(x2+1)4
Step 2.5
Simplify.
Tap for more steps...
Step 2.5.1
Apply the distributive property.
f′′(x)=(x2+1)2(-2x)+(-4(-x2)-41)((x2+1)x)(x2+1)4
Step 2.5.2
Apply the distributive property.
f′′(x)=(x2+1)2(-2x)+(-4(-x2)-41)(x2x+1x)(x2+1)4
Step 2.5.3
Simplify the numerator.
Tap for more steps...
Step 2.5.3.1
Simplify each term.
Tap for more steps...
Step 2.5.3.1.1
Rewrite using the commutative property of multiplication.
f′′(x)=-2(x2+1)2x+(-4(-x2)-41)(x2x+1x)(x2+1)4
Step 2.5.3.1.2
Rewrite (x2+1)2 as (x2+1)(x2+1).
f′′(x)=-2((x2+1)(x2+1))x+(-4(-x2)-41)(x2x+1x)(x2+1)4
Step 2.5.3.1.3
Expand (x2+1)(x2+1) using the FOIL Method.
Tap for more steps...
Step 2.5.3.1.3.1
Apply the distributive property.
f′′(x)=-2(x2(x2+1)+1(x2+1))x+(-4(-x2)-41)(x2x+1x)(x2+1)4
Step 2.5.3.1.3.2
Apply the distributive property.
f′′(x)=-2(x2x2+x21+1(x2+1))x+(-4(-x2)-41)(x2x+1x)(x2+1)4
Step 2.5.3.1.3.3
Apply the distributive property.
f′′(x)=-2(x2x2+x21+1x2+11)x+(-4(-x2)-41)(x2x+1x)(x2+1)4
f′′(x)=-2(x2x2+x21+1x2+11)x+(-4(-x2)-41)(x2x+1x)(x2+1)4
Step 2.5.3.1.4
Simplify and combine like terms.
Tap for more steps...
Step 2.5.3.1.4.1
Simplify each term.
Tap for more steps...
Step 2.5.3.1.4.1.1
Multiply x2 by x2 by adding the exponents.
Tap for more steps...
Step 2.5.3.1.4.1.1.1
Use the power rule aman=am+n to combine exponents.
f′′(x)=-2(x2+2+x21+1x2+11)x+(-4(-x2)-41)(x2x+1x)(x2+1)4
Step 2.5.3.1.4.1.1.2
Add 2 and 2.
f′′(x)=-2(x4+x21+1x2+11)x+(-4(-x2)-41)(x2x+1x)(x2+1)4
f′′(x)=-2(x4+x21+1x2+11)x+(-4(-x2)-41)(x2x+1x)(x2+1)4
Step 2.5.3.1.4.1.2
Multiply x2 by 1.
f′′(x)=-2(x4+x2+1x2+11)x+(-4(-x2)-41)(x2x+1x)(x2+1)4
Step 2.5.3.1.4.1.3
Multiply x2 by 1.
f′′(x)=-2(x4+x2+x2+11)x+(-4(-x2)-41)(x2x+1x)(x2+1)4
Step 2.5.3.1.4.1.4
Multiply 1 by 1.
f′′(x)=-2(x4+x2+x2+1)x+(-4(-x2)-41)(x2x+1x)(x2+1)4
f′′(x)=-2(x4+x2+x2+1)x+(-4(-x2)-41)(x2x+1x)(x2+1)4
Step 2.5.3.1.4.2
Add x2 and x2.
f′′(x)=-2(x4+2x2+1)x+(-4(-x2)-41)(x2x+1x)(x2+1)4
f′′(x)=-2(x4+2x2+1)x+(-4(-x2)-41)(x2x+1x)(x2+1)4
Step 2.5.3.1.5
Apply the distributive property.
f′′(x)=(-2x4-2(2x2)-21)x+(-4(-x2)-41)(x2x+1x)(x2+1)4
Step 2.5.3.1.6
Simplify.
Tap for more steps...
Step 2.5.3.1.6.1
Multiply 2 by -2.
f′′(x)=(-2x4-4x2-21)x+(-4(-x2)-41)(x2x+1x)(x2+1)4
Step 2.5.3.1.6.2
Multiply -2 by 1.
f′′(x)=(-2x4-4x2-2)x+(-4(-x2)-41)(x2x+1x)(x2+1)4
f′′(x)=(-2x4-4x2-2)x+(-4(-x2)-41)(x2x+1x)(x2+1)4
Step 2.5.3.1.7
Apply the distributive property.
f′′(x)=-2x4x-4x2x-2x+(-4(-x2)-41)(x2x+1x)(x2+1)4
Step 2.5.3.1.8
Simplify.
Tap for more steps...
Step 2.5.3.1.8.1
Multiply x4 by x by adding the exponents.
Tap for more steps...
Step 2.5.3.1.8.1.1
Move x.
f′′(x)=-2(xx4)-4x2x-2x+(-4(-x2)-41)(x2x+1x)(x2+1)4
Step 2.5.3.1.8.1.2
Multiply x by x4.
Tap for more steps...
Step 2.5.3.1.8.1.2.1
Raise x to the power of 1.
f′′(x)=-2(xx4)-4x2x-2x+(-4(-x2)-41)(x2x+1x)(x2+1)4
Step 2.5.3.1.8.1.2.2
Use the power rule aman=am+n to combine exponents.
f′′(x)=-2x1+4-4x2x-2x+(-4(-x2)-41)(x2x+1x)(x2+1)4
f′′(x)=-2x1+4-4x2x-2x+(-4(-x2)-41)(x2x+1x)(x2+1)4
Step 2.5.3.1.8.1.3
Add 1 and 4.
f′′(x)=-2x5-4x2x-2x+(-4(-x2)-41)(x2x+1x)(x2+1)4
f′′(x)=-2x5-4x2x-2x+(-4(-x2)-41)(x2x+1x)(x2+1)4
Step 2.5.3.1.8.2
Multiply x2 by x by adding the exponents.
Tap for more steps...
Step 2.5.3.1.8.2.1
Move x.
f′′(x)=-2x5-4(xx2)-2x+(-4(-x2)-41)(x2x+1x)(x2+1)4
Step 2.5.3.1.8.2.2
Multiply x by x2.
Tap for more steps...
Step 2.5.3.1.8.2.2.1
Raise x to the power of 1.
f′′(x)=-2x5-4(xx2)-2x+(-4(-x2)-41)(x2x+1x)(x2+1)4
Step 2.5.3.1.8.2.2.2
Use the power rule aman=am+n to combine exponents.
f′′(x)=-2x5-4x1+2-2x+(-4(-x2)-41)(x2x+1x)(x2+1)4
f′′(x)=-2x5-4x1+2-2x+(-4(-x2)-41)(x2x+1x)(x2+1)4
Step 2.5.3.1.8.2.3
Add 1 and 2.
f′′(x)=-2x5-4x3-2x+(-4(-x2)-41)(x2x+1x)(x2+1)4
f′′(x)=-2x5-4x3-2x+(-4(-x2)-41)(x2x+1x)(x2+1)4
f′′(x)=-2x5-4x3-2x+(-4(-x2)-41)(x2x+1x)(x2+1)4
Step 2.5.3.1.9
Simplify each term.
Tap for more steps...
Step 2.5.3.1.9.1
Multiply -1 by -4.
f′′(x)=-2x5-4x3-2x+(4x2-41)(x2x+1x)(x2+1)4
Step 2.5.3.1.9.2
Multiply -4 by 1.
f′′(x)=-2x5-4x3-2x+(4x2-4)(x2x+1x)(x2+1)4
f′′(x)=-2x5-4x3-2x+(4x2-4)(x2x+1x)(x2+1)4
Step 2.5.3.1.10
Simplify each term.
Tap for more steps...
Step 2.5.3.1.10.1
Multiply x2 by x by adding the exponents.
Tap for more steps...
Step 2.5.3.1.10.1.1
Multiply x2 by x.
Tap for more steps...
Step 2.5.3.1.10.1.1.1
Raise x to the power of 1.
f′′(x)=-2x5-4x3-2x+(4x2-4)(x2x+1x)(x2+1)4
Step 2.5.3.1.10.1.1.2
Use the power rule aman=am+n to combine exponents.
f′′(x)=-2x5-4x3-2x+(4x2-4)(x2+1+1x)(x2+1)4
f′′(x)=-2x5-4x3-2x+(4x2-4)(x2+1+1x)(x2+1)4
Step 2.5.3.1.10.1.2
Add 2 and 1.
f′′(x)=-2x5-4x3-2x+(4x2-4)(x3+1x)(x2+1)4
f′′(x)=-2x5-4x3-2x+(4x2-4)(x3+1x)(x2+1)4
Step 2.5.3.1.10.2
Multiply x by 1.
f′′(x)=-2x5-4x3-2x+(4x2-4)(x3+x)(x2+1)4
f′′(x)=-2x5-4x3-2x+(4x2-4)(x3+x)(x2+1)4
Step 2.5.3.1.11
Expand (4x2-4)(x3+x) using the FOIL Method.
Tap for more steps...
Step 2.5.3.1.11.1
Apply the distributive property.
f′′(x)=-2x5-4x3-2x+4x2(x3+x)-4(x3+x)(x2+1)4
Step 2.5.3.1.11.2
Apply the distributive property.
f′′(x)=-2x5-4x3-2x+4x2x3+4x2x-4(x3+x)(x2+1)4
Step 2.5.3.1.11.3
Apply the distributive property.
f′′(x)=-2x5-4x3-2x+4x2x3+4x2x-4x3-4x(x2+1)4
f′′(x)=-2x5-4x3-2x+4x2x3+4x2x-4x3-4x(x2+1)4
Step 2.5.3.1.12
Simplify and combine like terms.
Tap for more steps...
Step 2.5.3.1.12.1
Simplify each term.
Tap for more steps...
Step 2.5.3.1.12.1.1
Multiply x2 by x3 by adding the exponents.
Tap for more steps...
Step 2.5.3.1.12.1.1.1
Move x3.
f′′(x)=-2x5-4x3-2x+4(x3x2)+4x2x-4x3-4x(x2+1)4
Step 2.5.3.1.12.1.1.2
Use the power rule aman=am+n to combine exponents.
f′′(x)=-2x5-4x3-2x+4x3+2+4x2x-4x3-4x(x2+1)4
Step 2.5.3.1.12.1.1.3
Add 3 and 2.
f′′(x)=-2x5-4x3-2x+4x5+4x2x-4x3-4x(x2+1)4
f′′(x)=-2x5-4x3-2x+4x5+4x2x-4x3-4x(x2+1)4
Step 2.5.3.1.12.1.2
Multiply x2 by x by adding the exponents.
Tap for more steps...
Step 2.5.3.1.12.1.2.1
Move x.
f′′(x)=-2x5-4x3-2x+4x5+4(xx2)-4x3-4x(x2+1)4
Step 2.5.3.1.12.1.2.2
Multiply x by x2.
Tap for more steps...
Step 2.5.3.1.12.1.2.2.1
Raise x to the power of 1.
f′′(x)=-2x5-4x3-2x+4x5+4(xx2)-4x3-4x(x2+1)4
Step 2.5.3.1.12.1.2.2.2
Use the power rule aman=am+n to combine exponents.
f′′(x)=-2x5-4x3-2x+4x5+4x1+2-4x3-4x(x2+1)4
f′′(x)=-2x5-4x3-2x+4x5+4x1+2-4x3-4x(x2+1)4
Step 2.5.3.1.12.1.2.3
Add 1 and 2.
f′′(x)=-2x5-4x3-2x+4x5+4x3-4x3-4x(x2+1)4
f′′(x)=-2x5-4x3-2x+4x5+4x3-4x3-4x(x2+1)4
f′′(x)=-2x5-4x3-2x+4x5+4x3-4x3-4x(x2+1)4
Step 2.5.3.1.12.2
Subtract 4x3 from 4x3.
f′′(x)=-2x5-4x3-2x+4x5+0-4x(x2+1)4
Step 2.5.3.1.12.3
Add 4x5 and 0.
f′′(x)=-2x5-4x3-2x+4x5-4x(x2+1)4
f′′(x)=-2x5-4x3-2x+4x5-4x(x2+1)4
f′′(x)=-2x5-4x3-2x+4x5-4x(x2+1)4
Step 2.5.3.2
Add -2x5 and 4x5.
f′′(x)=2x5-4x3-2x-4x(x2+1)4
Step 2.5.3.3
Subtract 4x from -2x.
f′′(x)=2x5-4x3-6x(x2+1)4
f′′(x)=2x5-4x3-6x(x2+1)4
Step 2.5.4
Simplify the numerator.
Tap for more steps...
Step 2.5.4.1
Factor 2x out of 2x5-4x3-6x.
Tap for more steps...
Step 2.5.4.1.1
Factor 2x out of 2x5.
f′′(x)=2x(x4)-4x3-6x(x2+1)4
Step 2.5.4.1.2
Factor 2x out of -4x3.
f′′(x)=2x(x4)+2x(-2x2)-6x(x2+1)4
Step 2.5.4.1.3
Factor 2x out of -6x.
f′′(x)=2x(x4)+2x(-2x2)+2x(-3)(x2+1)4
Step 2.5.4.1.4
Factor 2x out of 2x(x4)+2x(-2x2).
f′′(x)=2x(x4-2x2)+2x(-3)(x2+1)4
Step 2.5.4.1.5
Factor 2x out of 2x(x4-2x2)+2x(-3).
f′′(x)=2x(x4-2x2-3)(x2+1)4
f′′(x)=2x(x4-2x2-3)(x2+1)4
Step 2.5.4.2
Rewrite x4 as (x2)2.
f′′(x)=2x((x2)2-2x2-3)(x2+1)4
Step 2.5.4.3
Let u=x2. Substitute u for all occurrences of x2.
f′′(x)=2x(u2-2u-3)(x2+1)4
Step 2.5.4.4
Factor u2-2u-3 using the AC method.
Tap for more steps...
Step 2.5.4.4.1
Consider the form x2+bx+c. Find a pair of integers whose product is c and whose sum is b. In this case, whose product is -3 and whose sum is -2.
-3,1
Step 2.5.4.4.2
Write the factored form using these integers.
f′′(x)=2x((u-3)(u+1))(x2+1)4
f′′(x)=2x((u-3)(u+1))(x2+1)4
Step 2.5.4.5
Replace all occurrences of u with x2.
f′′(x)=2x(x2-3)(x2+1)(x2+1)4
f′′(x)=2x(x2-3)(x2+1)(x2+1)4
Step 2.5.5
Cancel the common factor of x2+1 and (x2+1)4.
Tap for more steps...
Step 2.5.5.1
Factor x2+1 out of 2x(x2-3)(x2+1).
f′′(x)=(x2+1)(2x(x2-3))(x2+1)4
Step 2.5.5.2
Cancel the common factors.
Tap for more steps...
Step 2.5.5.2.1
Factor x2+1 out of (x2+1)4.
f′′(x)=(x2+1)(2x(x2-3))(x2+1)(x2+1)3
Step 2.5.5.2.2
Cancel the common factor.
f′′(x)=(x2+1)(2x(x2-3))(x2+1)(x2+1)3
Step 2.5.5.2.3
Rewrite the expression.
f′′(x)=2x(x2-3)(x2+1)3
f′′(x)=2x(x2-3)(x2+1)3
f′′(x)=2x(x2-3)(x2+1)3
f′′(x)=2x(x2-3)(x2+1)3
f′′(x)=2x(x2-3)(x2+1)3
Step 3
To find the local maximum and minimum values of the function, set the derivative equal to 0 and solve.
-x2+1(x2+1)2=0
Step 4
Find the first derivative.
Tap for more steps...
Step 4.1
Find the first derivative.
Tap for more steps...
Step 4.1.1
Differentiate using the Quotient Rule which states that ddx[f(x)g(x)] is g(x)ddx[f(x)]-f(x)ddx[g(x)]g(x)2 where f(x)=x and g(x)=x2+1.
(x2+1)ddx[x]-xddx[x2+1](x2+1)2
Step 4.1.2
Differentiate.
Tap for more steps...
Step 4.1.2.1
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=1.
(x2+1)1-xddx[x2+1](x2+1)2
Step 4.1.2.2
Multiply x2+1 by 1.
x2+1-xddx[x2+1](x2+1)2
Step 4.1.2.3
By the Sum Rule, the derivative of x2+1 with respect to x is ddx[x2]+ddx[1].
x2+1-x(ddx[x2]+ddx[1])(x2+1)2
Step 4.1.2.4
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=2.
x2+1-x(2x+ddx[1])(x2+1)2
Step 4.1.2.5
Since 1 is constant with respect to x, the derivative of 1 with respect to x is 0.
x2+1-x(2x+0)(x2+1)2
Step 4.1.2.6
Simplify the expression.
Tap for more steps...
Step 4.1.2.6.1
Add 2x and 0.
x2+1-x(2x)(x2+1)2
Step 4.1.2.6.2
Multiply 2 by -1.
x2+1-2xx(x2+1)2
x2+1-2xx(x2+1)2
x2+1-2xx(x2+1)2
Step 4.1.3
Raise x to the power of 1.
x2+1-2(x1x)(x2+1)2
Step 4.1.4
Raise to the power of .
Step 4.1.5
Use the power rule to combine exponents.
Step 4.1.6
Add and .
Step 4.1.7
Subtract from .
Step 4.2
The first derivative of with respect to is .
Step 5
Set the first derivative equal to then solve the equation .
Tap for more steps...
Step 5.1
Set the first derivative equal to .
Step 5.2
Set the numerator equal to zero.
Step 5.3
Solve the equation for .
Tap for more steps...
Step 5.3.1
Subtract from both sides of the equation.
Step 5.3.2
Divide each term in by and simplify.
Tap for more steps...
Step 5.3.2.1
Divide each term in by .
Step 5.3.2.2
Simplify the left side.
Tap for more steps...
Step 5.3.2.2.1
Dividing two negative values results in a positive value.
Step 5.3.2.2.2
Divide by .
Step 5.3.2.3
Simplify the right side.
Tap for more steps...
Step 5.3.2.3.1
Divide by .
Step 5.3.3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Step 5.3.4
Any root of is .
Step 5.3.5
The complete solution is the result of both the positive and negative portions of the solution.
Tap for more steps...
Step 5.3.5.1
First, use the positive value of the to find the first solution.
Step 5.3.5.2
Next, use the negative value of the to find the second solution.
Step 5.3.5.3
The complete solution is the result of both the positive and negative portions of the solution.
Step 6
Find the values where the derivative is undefined.
Tap for more steps...
Step 6.1
The domain of the expression is all real numbers except where the expression is undefined. In this case, there is no real number that makes the expression undefined.
Step 7
Critical points to evaluate.
Step 8
Evaluate the second derivative at . If the second derivative is positive, then this is a local minimum. If it is negative, then this is a local maximum.
Step 9
Evaluate the second derivative.
Tap for more steps...
Step 9.1
Multiply by .
Step 9.2
Simplify the denominator.
Tap for more steps...
Step 9.2.1
One to any power is one.
Step 9.2.2
Add and .
Step 9.2.3
Raise to the power of .
Step 9.3
Simplify the numerator.
Tap for more steps...
Step 9.3.1
One to any power is one.
Step 9.3.2
Subtract from .
Step 9.4
Reduce the expression by cancelling the common factors.
Tap for more steps...
Step 9.4.1
Multiply by .
Step 9.4.2
Cancel the common factor of and .
Tap for more steps...
Step 9.4.2.1
Factor out of .
Step 9.4.2.2
Cancel the common factors.
Tap for more steps...
Step 9.4.2.2.1
Factor out of .
Step 9.4.2.2.2
Cancel the common factor.
Step 9.4.2.2.3
Rewrite the expression.
Step 9.4.3
Move the negative in front of the fraction.
Step 10
is a local maximum because the value of the second derivative is negative. This is referred to as the second derivative test.
is a local maximum
Step 11
Find the y-value when .
Tap for more steps...
Step 11.1
Replace the variable with in the expression.
Step 11.2
Simplify the result.
Tap for more steps...
Step 11.2.1
Simplify the denominator.
Tap for more steps...
Step 11.2.1.1
One to any power is one.
Step 11.2.1.2
Add and .
Step 11.2.2
The final answer is .
Step 12
Evaluate the second derivative at . If the second derivative is positive, then this is a local minimum. If it is negative, then this is a local maximum.
Step 13
Evaluate the second derivative.
Tap for more steps...
Step 13.1
Multiply by .
Step 13.2
Simplify the denominator.
Tap for more steps...
Step 13.2.1
Raise to the power of .
Step 13.2.2
Add and .
Step 13.2.3
Raise to the power of .
Step 13.3
Simplify the numerator.
Tap for more steps...
Step 13.3.1
Raise to the power of .
Step 13.3.2
Subtract from .
Step 13.4
Reduce the expression by cancelling the common factors.
Tap for more steps...
Step 13.4.1
Multiply by .
Step 13.4.2
Cancel the common factor of and .
Tap for more steps...
Step 13.4.2.1
Factor out of .
Step 13.4.2.2
Cancel the common factors.
Tap for more steps...
Step 13.4.2.2.1
Factor out of .
Step 13.4.2.2.2
Cancel the common factor.
Step 13.4.2.2.3
Rewrite the expression.
Step 14
is a local minimum because the value of the second derivative is positive. This is referred to as the second derivative test.
is a local minimum
Step 15
Find the y-value when .
Tap for more steps...
Step 15.1
Replace the variable with in the expression.
Step 15.2
Simplify the result.
Tap for more steps...
Step 15.2.1
Simplify the denominator.
Tap for more steps...
Step 15.2.1.1
Raise to the power of .
Step 15.2.1.2
Add and .
Step 15.2.2
Move the negative in front of the fraction.
Step 15.2.3
The final answer is .
Step 16
These are the local extrema for .
is a local maxima
is a local minima
Step 17