Enter a problem...
Calculus Examples
g(x)=4x3e-xg(x)=4x3e−x , -1≤x≤6−1≤x≤6
Step 1
Step 1.1
Find the first derivative.
Step 1.1.1
Find the first derivative.
Step 1.1.1.1
Since 44 is constant with respect to xx, the derivative of 4x3e-x4x3e−x with respect to xx is 4ddx[x3e-x]4ddx[x3e−x].
4ddx[x3e-x]4ddx[x3e−x]
Step 1.1.1.2
Differentiate using the Product Rule which states that ddx[f(x)g(x)]ddx[f(x)g(x)] is f(x)ddx[g(x)]+g(x)ddx[f(x)]f(x)ddx[g(x)]+g(x)ddx[f(x)] where f(x)=x3f(x)=x3 and g(x)=e-xg(x)=e−x.
4(x3ddx[e-x]+e-xddx[x3])4(x3ddx[e−x]+e−xddx[x3])
Step 1.1.1.3
Differentiate using the chain rule, which states that ddx[f(g(x))]ddx[f(g(x))] is f′(g(x))g′(x) where f(x)=ex and g(x)=-x.
Step 1.1.1.3.1
To apply the Chain Rule, set u as -x.
4(x3(ddu[eu]ddx[-x])+e-xddx[x3])
Step 1.1.1.3.2
Differentiate using the Exponential Rule which states that ddu[au] is auln(a) where a=e.
4(x3(euddx[-x])+e-xddx[x3])
Step 1.1.1.3.3
Replace all occurrences of u with -x.
4(x3(e-xddx[-x])+e-xddx[x3])
4(x3(e-xddx[-x])+e-xddx[x3])
Step 1.1.1.4
Differentiate.
Step 1.1.1.4.1
Since -1 is constant with respect to x, the derivative of -x with respect to x is -ddx[x].
4(x3(e-x(-ddx[x]))+e-xddx[x3])
Step 1.1.1.4.2
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=1.
4(x3(e-x(-1⋅1))+e-xddx[x3])
Step 1.1.1.4.3
Simplify the expression.
Step 1.1.1.4.3.1
Multiply -1 by 1.
4(x3(e-x⋅-1)+e-xddx[x3])
Step 1.1.1.4.3.2
Move -1 to the left of e-x.
4(x3(-1⋅e-x)+e-xddx[x3])
Step 1.1.1.4.3.3
Rewrite -1e-x as -e-x.
4(x3(-e-x)+e-xddx[x3])
4(x3(-e-x)+e-xddx[x3])
Step 1.1.1.4.4
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=3.
4(x3(-e-x)+e-x(3x2))
4(x3(-e-x)+e-x(3x2))
Step 1.1.1.5
Simplify.
Step 1.1.1.5.1
Apply the distributive property.
4(x3(-e-x))+4(e-x(3x2))
Step 1.1.1.5.2
Combine terms.
Step 1.1.1.5.2.1
Multiply -1 by 4.
-4(x3(e-x))+4(e-x(3x2))
Step 1.1.1.5.2.2
Multiply 3 by 4.
-4x3e-x+12e-xx2
-4x3e-x+12e-xx2
Step 1.1.1.5.3
Reorder terms.
-4e-xx3+12e-xx2
Step 1.1.1.5.4
Reorder factors in -4e-xx3+12e-xx2.
f′(x)=-4x3e-x+12x2e-x
f′(x)=-4x3e-x+12x2e-x
f′(x)=-4x3e-x+12x2e-x
Step 1.1.2
The first derivative of g(x) with respect to x is -4x3e-x+12x2e-x.
-4x3e-x+12x2e-x
-4x3e-x+12x2e-x
Step 1.2
Set the first derivative equal to 0 then solve the equation -4x3e-x+12x2e-x=0.
Step 1.2.1
Set the first derivative equal to 0.
-4x3e-x+12x2e-x=0
Step 1.2.2
Factor 4x2e-x out of -4x3e-x+12x2e-x.
Step 1.2.2.1
Factor 4x2e-x out of -4x3e-x.
4x2e-x(-x)+12x2e-x=0
Step 1.2.2.2
Factor 4x2e-x out of 12x2e-x.
4x2e-x(-x)+4x2e-x(3)=0
Step 1.2.2.3
Factor 4x2e-x out of 4x2e-x(-x)+4x2e-x(3).
4x2e-x(-x+3)=0
4x2e-x(-x+3)=0
Step 1.2.3
If any individual factor on the left side of the equation is equal to 0, the entire expression will be equal to 0.
x2=0
e-x=0
-x+3=0
Step 1.2.4
Set x2 equal to 0 and solve for x.
Step 1.2.4.1
Set x2 equal to 0.
x2=0
Step 1.2.4.2
Solve x2=0 for x.
Step 1.2.4.2.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
x=±√0
Step 1.2.4.2.2
Simplify ±√0.
Step 1.2.4.2.2.1
Rewrite 0 as 02.
x=±√02
Step 1.2.4.2.2.2
Pull terms out from under the radical, assuming positive real numbers.
x=±0
Step 1.2.4.2.2.3
Plus or minus 0 is 0.
x=0
x=0
x=0
x=0
Step 1.2.5
Set e-x equal to 0 and solve for x.
Step 1.2.5.1
Set e-x equal to 0.
e-x=0
Step 1.2.5.2
Solve e-x=0 for x.
Step 1.2.5.2.1
Take the natural logarithm of both sides of the equation to remove the variable from the exponent.
ln(e-x)=ln(0)
Step 1.2.5.2.2
The equation cannot be solved because ln(0) is undefined.
Undefined
Step 1.2.5.2.3
There is no solution for e-x=0
No solution
No solution
No solution
Step 1.2.6
Set -x+3 equal to 0 and solve for x.
Step 1.2.6.1
Set -x+3 equal to 0.
-x+3=0
Step 1.2.6.2
Solve -x+3=0 for x.
Step 1.2.6.2.1
Subtract 3 from both sides of the equation.
-x=-3
Step 1.2.6.2.2
Divide each term in -x=-3 by -1 and simplify.
Step 1.2.6.2.2.1
Divide each term in -x=-3 by -1.
-x-1=-3-1
Step 1.2.6.2.2.2
Simplify the left side.
Step 1.2.6.2.2.2.1
Dividing two negative values results in a positive value.
x1=-3-1
Step 1.2.6.2.2.2.2
Divide x by 1.
x=-3-1
x=-3-1
Step 1.2.6.2.2.3
Simplify the right side.
Step 1.2.6.2.2.3.1
Divide -3 by -1.
x=3
x=3
x=3
x=3
x=3
Step 1.2.7
The final solution is all the values that make 4x2e-x(-x+3)=0 true.
x=0,3
x=0,3
Step 1.3
Find the values where the derivative is undefined.
Step 1.3.1
The domain of the expression is all real numbers except where the expression is undefined. In this case, there is no real number that makes the expression undefined.
Step 1.4
Evaluate 4x3e-x at each x value where the derivative is 0 or undefined.
Step 1.4.1
Evaluate at x=0.
Step 1.4.1.1
Substitute 0 for x.
4(0)3e-(0)
Step 1.4.1.2
Simplify.
Step 1.4.1.2.1
Raising 0 to any positive power yields 0.
4⋅0e-(0)
Step 1.4.1.2.2
Multiply 4 by 0.
0e-(0)
Step 1.4.1.2.3
Multiply -1 by 0.
0e0
Step 1.4.1.2.4
Anything raised to 0 is 1.
0⋅1
Step 1.4.1.2.5
Multiply 0 by 1.
0
0
0
Step 1.4.2
Evaluate at x=3.
Step 1.4.2.1
Substitute 3 for x.
4(3)3e-(3)
Step 1.4.2.2
Simplify.
Step 1.4.2.2.1
Raise 3 to the power of 3.
4⋅27e-(3)
Step 1.4.2.2.2
Multiply 4 by 27.
108e-(3)
Step 1.4.2.2.3
Multiply -1 by 3.
108e-3
Step 1.4.2.2.4
Rewrite the expression using the negative exponent rule b-n=1bn.
1081e3
Step 1.4.2.2.5
Combine 108 and 1e3.
108e3
108e3
108e3
Step 1.4.3
List all of the points.
(0,0),(3,108e3)
(0,0),(3,108e3)
(0,0),(3,108e3)
Step 2
Step 2.1
Evaluate at x=-1.
Step 2.1.1
Substitute -1 for x.
4(-1)3e-(-1)
Step 2.1.2
Simplify.
Step 2.1.2.1
Raise -1 to the power of 3.
4⋅-1e-(-1)
Step 2.1.2.2
Multiply 4 by -1.
-4e-(-1)
Step 2.1.2.3
Multiply -1 by -1.
-4e1
Step 2.1.2.4
Simplify.
-4e
-4e
-4e
Step 2.2
Evaluate at x=6.
Step 2.2.1
Substitute 6 for x.
4(6)3e-(6)
Step 2.2.2
Simplify.
Step 2.2.2.1
Raise 6 to the power of 3.
4⋅216e-(6)
Step 2.2.2.2
Multiply 4 by 216.
864e-(6)
Step 2.2.2.3
Multiply -1 by 6.
864e-6
Step 2.2.2.4
Rewrite the expression using the negative exponent rule b-n=1bn.
8641e6
Step 2.2.2.5
Combine 864 and 1e6.
864e6
864e6
864e6
Step 2.3
List all of the points.
(-1,-4e),(6,864e6)
(-1,-4e),(6,864e6)
Step 3
Compare the g(x) values found for each value of x in order to determine the absolute maximum and minimum over the given interval. The maximum will occur at the highest g(x) value and the minimum will occur at the lowest g(x) value.
Absolute Maximum: (3,108e3)
Absolute Minimum: (-1,-4e)
Step 4