Enter a problem...
Calculus Examples
g(x)=120x2-25√x on 0 , 36
Step 1
Step 1.1
Find the first derivative.
Step 1.1.1
Find the first derivative.
Step 1.1.1.1
By the Sum Rule, the derivative of 120x2-25√x with respect to x is ddx[120x2]+ddx[-25√x].
ddx[120x2]+ddx[-25√x]
Step 1.1.1.2
Evaluate ddx[120x2].
Step 1.1.1.2.1
Since 120 is constant with respect to x, the derivative of 120x2 with respect to x is 120ddx[x2].
120ddx[x2]+ddx[-25√x]
Step 1.1.1.2.2
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=2.
120(2x)+ddx[-25√x]
Step 1.1.1.2.3
Combine 2 and 120.
220x+ddx[-25√x]
Step 1.1.1.2.4
Combine 220 and x.
2x20+ddx[-25√x]
Step 1.1.1.2.5
Cancel the common factor of 2 and 20.
Step 1.1.1.2.5.1
Factor 2 out of 2x.
2(x)20+ddx[-25√x]
Step 1.1.1.2.5.2
Cancel the common factors.
Step 1.1.1.2.5.2.1
Factor 2 out of 20.
2x2⋅10+ddx[-25√x]
Step 1.1.1.2.5.2.2
Cancel the common factor.
2x2⋅10+ddx[-25√x]
Step 1.1.1.2.5.2.3
Rewrite the expression.
x10+ddx[-25√x]
x10+ddx[-25√x]
x10+ddx[-25√x]
x10+ddx[-25√x]
Step 1.1.1.3
Evaluate ddx[-25√x].
Step 1.1.1.3.1
Use n√ax=axn to rewrite √x as x12.
x10+ddx[-25x12]
Step 1.1.1.3.2
Since -25 is constant with respect to x, the derivative of -25x12 with respect to x is -25ddx[x12].
x10-25ddx[x12]
Step 1.1.1.3.3
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=12.
x10-25(12x12-1)
Step 1.1.1.3.4
To write -1 as a fraction with a common denominator, multiply by 22.
x10-25(12x12-1⋅22)
Step 1.1.1.3.5
Combine -1 and 22.
x10-25(12x12+-1⋅22)
Step 1.1.1.3.6
Combine the numerators over the common denominator.
x10-25(12x1-1⋅22)
Step 1.1.1.3.7
Simplify the numerator.
Step 1.1.1.3.7.1
Multiply -1 by 2.
x10-25(12x1-22)
Step 1.1.1.3.7.2
Subtract 2 from 1.
x10-25(12x-12)
x10-25(12x-12)
Step 1.1.1.3.8
Move the negative in front of the fraction.
x10-25(12x-12)
Step 1.1.1.3.9
Combine 12 and x-12.
x10-25x-122
Step 1.1.1.3.10
Combine -25 and x-122.
x10+-25x-122
Step 1.1.1.3.11
Move x-12 to the denominator using the negative exponent rule b-n=1bn.
x10+-252x12
Step 1.1.1.3.12
Move the negative in front of the fraction.
f′(x)=x10-252x12
f′(x)=x10-252x12
f′(x)=x10-252x12
Step 1.1.2
The first derivative of g(x) with respect to x is x10-252x12.
x10-252x12
x10-252x12
Step 1.2
Set the first derivative equal to 0 then solve the equation x10-252x12=0.
Step 1.2.1
Set the first derivative equal to 0.
x10-252x12=0
Step 1.2.2
Find the LCD of the terms in the equation.
Step 1.2.2.1
Finding the LCD of a list of values is the same as finding the LCM of the denominators of those values.
10,2x12,1
Step 1.2.2.2
Since 10,2x12,1 contains both numbers and variables, there are two steps to find the LCM. Find LCM for the numeric part 10,2,1 then find LCM for the variable part x12.
Step 1.2.2.3
The LCM is the smallest positive number that all of the numbers divide into evenly.
1. List the prime factors of each number.
2. Multiply each factor the greatest number of times it occurs in either number.
Step 1.2.2.4
10 has factors of 2 and 5.
2⋅5
Step 1.2.2.5
Since 2 has no factors besides 1 and 2.
2 is a prime number
Step 1.2.2.6
The number 1 is not a prime number because it only has one positive factor, which is itself.
Not prime
Step 1.2.2.7
The LCM of 10,2,1 is the result of multiplying all prime factors the greatest number of times they occur in either number.
2⋅5
Step 1.2.2.8
Multiply 2 by 5.
10
Step 1.2.2.9
The LCM of x12 is the result of multiplying all prime factors the greatest number of times they occur in either term.
x12
Step 1.2.2.10
The LCM for 10,2x12,1 is the numeric part 10 multiplied by the variable part.
10x12
10x12
Step 1.2.3
Multiply each term in x10-252x12=0 by 10x12 to eliminate the fractions.
Step 1.2.3.1
Multiply each term in x10-252x12=0 by 10x12.
x10(10x12)-252x12(10x12)=0(10x12)
Step 1.2.3.2
Simplify the left side.
Step 1.2.3.2.1
Simplify each term.
Step 1.2.3.2.1.1
Rewrite using the commutative property of multiplication.
10x10x12-252x12(10x12)=0(10x12)
Step 1.2.3.2.1.2
Cancel the common factor of 10.
Step 1.2.3.2.1.2.1
Cancel the common factor.
10x10x12-252x12(10x12)=0(10x12)
Step 1.2.3.2.1.2.2
Rewrite the expression.
x⋅x12-252x12(10x12)=0(10x12)
x⋅x12-252x12(10x12)=0(10x12)
Step 1.2.3.2.1.3
Multiply x by x12 by adding the exponents.
Step 1.2.3.2.1.3.1
Multiply x by x12.
Step 1.2.3.2.1.3.1.1
Raise x to the power of 1.
x1x12-252x12(10x12)=0(10x12)
Step 1.2.3.2.1.3.1.2
Use the power rule aman=am+n to combine exponents.
x1+12-252x12(10x12)=0(10x12)
x1+12-252x12(10x12)=0(10x12)
Step 1.2.3.2.1.3.2
Write 1 as a fraction with a common denominator.
x22+12-252x12(10x12)=0(10x12)
Step 1.2.3.2.1.3.3
Combine the numerators over the common denominator.
x2+12-252x12(10x12)=0(10x12)
Step 1.2.3.2.1.3.4
Add 2 and 1.
x32-252x12(10x12)=0(10x12)
x32-252x12(10x12)=0(10x12)
Step 1.2.3.2.1.4
Cancel the common factor of 2x12.
Step 1.2.3.2.1.4.1
Move the leading negative in -252x12 into the numerator.
x32+-252x12(10x12)=0(10x12)
Step 1.2.3.2.1.4.2
Factor 2x12 out of 10x12.
x32+-252x12(2x12(5))=0(10x12)
Step 1.2.3.2.1.4.3
Cancel the common factor.
x32+-252x12(2x12⋅5)=0(10x12)
Step 1.2.3.2.1.4.4
Rewrite the expression.
x32-25⋅5=0(10x12)
x32-25⋅5=0(10x12)
Step 1.2.3.2.1.5
Multiply -25 by 5.
x32-125=0(10x12)
x32-125=0(10x12)
x32-125=0(10x12)
Step 1.2.3.3
Simplify the right side.
Step 1.2.3.3.1
Multiply 0(10x12).
Step 1.2.3.3.1.1
Multiply 10 by 0.
x32-125=0x12
Step 1.2.3.3.1.2
Multiply 0 by x12.
x32-125=0
x32-125=0
x32-125=0
x32-125=0
Step 1.2.4
Solve the equation.
Step 1.2.4.1
Add 125 to both sides of the equation.
x32=125
Step 1.2.4.2
Raise each side of the equation to the power of 23 to eliminate the fractional exponent on the left side.
(x32)23=12523
Step 1.2.4.3
Simplify the exponent.
Step 1.2.4.3.1
Simplify the left side.
Step 1.2.4.3.1.1
Simplify (x32)23.
Step 1.2.4.3.1.1.1
Multiply the exponents in (x32)23.
Step 1.2.4.3.1.1.1.1
Apply the power rule and multiply exponents, (am)n=amn.
x32⋅23=12523
Step 1.2.4.3.1.1.1.2
Cancel the common factor of 3.
Step 1.2.4.3.1.1.1.2.1
Cancel the common factor.
x32⋅23=12523
Step 1.2.4.3.1.1.1.2.2
Rewrite the expression.
x12⋅2=12523
x12⋅2=12523
Step 1.2.4.3.1.1.1.3
Cancel the common factor of 2.
Step 1.2.4.3.1.1.1.3.1
Cancel the common factor.
x12⋅2=12523
Step 1.2.4.3.1.1.1.3.2
Rewrite the expression.
x1=12523
x1=12523
x1=12523
Step 1.2.4.3.1.1.2
Simplify.
x=12523
x=12523
x=12523
Step 1.2.4.3.2
Simplify the right side.
Step 1.2.4.3.2.1
Simplify 12523.
Step 1.2.4.3.2.1.1
Simplify the expression.
Step 1.2.4.3.2.1.1.1
Rewrite 125 as 53.
x=(53)23
Step 1.2.4.3.2.1.1.2
Apply the power rule and multiply exponents, (am)n=amn.
x=53(23)
x=53(23)
Step 1.2.4.3.2.1.2
Cancel the common factor of 3.
Step 1.2.4.3.2.1.2.1
Cancel the common factor.
x=53(23)
Step 1.2.4.3.2.1.2.2
Rewrite the expression.
x=52
x=52
Step 1.2.4.3.2.1.3
Raise 5 to the power of 2.
x=25
x=25
x=25
x=25
x=25
x=25
Step 1.3
Find the values where the derivative is undefined.
Step 1.3.1
Convert expressions with fractional exponents to radicals.
Step 1.3.1.1
Apply the rule xmn=n√xm to rewrite the exponentiation as a radical.
x10-252√x1
Step 1.3.1.2
Anything raised to 1 is the base itself.
x10-252√x
x10-252√x
Step 1.3.2
Set the denominator in 252√x equal to 0 to find where the expression is undefined.
2√x=0
Step 1.3.3
Solve for x.
Step 1.3.3.1
To remove the radical on the left side of the equation, square both sides of the equation.
(2√x)2=02
Step 1.3.3.2
Simplify each side of the equation.
Step 1.3.3.2.1
Use n√ax=axn to rewrite √x as x12.
(2x12)2=02
Step 1.3.3.2.2
Simplify the left side.
Step 1.3.3.2.2.1
Simplify (2x12)2.
Step 1.3.3.2.2.1.1
Apply the product rule to 2x12.
22(x12)2=02
Step 1.3.3.2.2.1.2
Raise 2 to the power of 2.
4(x12)2=02
Step 1.3.3.2.2.1.3
Multiply the exponents in (x12)2.
Step 1.3.3.2.2.1.3.1
Apply the power rule and multiply exponents, (am)n=amn.
4x12⋅2=02
Step 1.3.3.2.2.1.3.2
Cancel the common factor of 2.
Step 1.3.3.2.2.1.3.2.1
Cancel the common factor.
4x12⋅2=02
Step 1.3.3.2.2.1.3.2.2
Rewrite the expression.
4x1=02
4x1=02
4x1=02
Step 1.3.3.2.2.1.4
Simplify.
4x=02
4x=02
4x=02
Step 1.3.3.2.3
Simplify the right side.
Step 1.3.3.2.3.1
Raising 0 to any positive power yields 0.
4x=0
4x=0
4x=0
Step 1.3.3.3
Divide each term in 4x=0 by 4 and simplify.
Step 1.3.3.3.1
Divide each term in 4x=0 by 4.
4x4=04
Step 1.3.3.3.2
Simplify the left side.
Step 1.3.3.3.2.1
Cancel the common factor of 4.
Step 1.3.3.3.2.1.1
Cancel the common factor.
4x4=04
Step 1.3.3.3.2.1.2
Divide x by 1.
x=04
x=04
x=04
Step 1.3.3.3.3
Simplify the right side.
Step 1.3.3.3.3.1
Divide 0 by 4.
x=0
x=0
x=0
x=0
Step 1.3.4
Set the radicand in √x less than 0 to find where the expression is undefined.
x<0
Step 1.3.5
The equation is undefined where the denominator equals 0, the argument of a square root is less than 0, or the argument of a logarithm is less than or equal to 0.
x≤0
(-∞,0]
x≤0
(-∞,0]
Step 1.4
Evaluate 120x2-25√x at each x value where the derivative is 0 or undefined.
Step 1.4.1
Evaluate at x=25.
Step 1.4.1.1
Substitute 25 for x.
120⋅(25)2-25√25
Step 1.4.1.2
Simplify.
Step 1.4.1.2.1
Simplify each term.
Step 1.4.1.2.1.1
Raise 25 to the power of 2.
120⋅625-25√25
Step 1.4.1.2.1.2
Cancel the common factor of 5.
Step 1.4.1.2.1.2.1
Factor 5 out of 20.
15(4)⋅625-25√25
Step 1.4.1.2.1.2.2
Factor 5 out of 625.
15⋅4⋅(5⋅125)-25√25
Step 1.4.1.2.1.2.3
Cancel the common factor.
15⋅4⋅(5⋅125)-25√25
Step 1.4.1.2.1.2.4
Rewrite the expression.
14⋅125-25√25
14⋅125-25√25
Step 1.4.1.2.1.3
Combine 14 and 125.
1254-25√25
Step 1.4.1.2.1.4
Rewrite 25 as 52.
1254-25√52
Step 1.4.1.2.1.5
Pull terms out from under the radical, assuming positive real numbers.
1254-25⋅5
Step 1.4.1.2.1.6
Multiply -25 by 5.
1254-125
1254-125
Step 1.4.1.2.2
To write -125 as a fraction with a common denominator, multiply by 44.
1254-125⋅44
Step 1.4.1.2.3
Combine -125 and 44.
1254+-125⋅44
Step 1.4.1.2.4
Combine the numerators over the common denominator.
125-125⋅44
Step 1.4.1.2.5
Simplify the numerator.
Step 1.4.1.2.5.1
Multiply -125 by 4.
125-5004
Step 1.4.1.2.5.2
Subtract 500 from 125.
-3754
-3754
Step 1.4.1.2.6
Move the negative in front of the fraction.
-3754
-3754
-3754
Step 1.4.2
Evaluate at x=0.
Step 1.4.2.1
Substitute 0 for x.
120⋅(0)2-25√0
Step 1.4.2.2
Simplify.
Step 1.4.2.2.1
Simplify each term.
Step 1.4.2.2.1.1
Raising 0 to any positive power yields 0.
120⋅0-25√0
Step 1.4.2.2.1.2
Multiply 120 by 0.
0-25√0
Step 1.4.2.2.1.3
Rewrite 0 as 02.
0-25√02
Step 1.4.2.2.1.4
Pull terms out from under the radical, assuming positive real numbers.
0-25⋅0
Step 1.4.2.2.1.5
Multiply -25 by 0.
0+0
0+0
Step 1.4.2.2.2
Add 0 and 0.
0
0
0
Step 1.4.3
List all of the points.
(25,-3754),(0,0)
(25,-3754),(0,0)
(25,-3754),(0,0)
Step 2
Step 2.1
Evaluate at x=0.
Step 2.1.1
Substitute 0 for x.
120⋅(0)2-25√0
Step 2.1.2
Simplify.
Step 2.1.2.1
Simplify each term.
Step 2.1.2.1.1
Raising 0 to any positive power yields 0.
120⋅0-25√0
Step 2.1.2.1.2
Multiply 120 by 0.
0-25√0
Step 2.1.2.1.3
Rewrite 0 as 02.
0-25√02
Step 2.1.2.1.4
Pull terms out from under the radical, assuming positive real numbers.
0-25⋅0
Step 2.1.2.1.5
Multiply -25 by 0.
0+0
0+0
Step 2.1.2.2
Add 0 and 0.
0
0
0
Step 2.2
Evaluate at x=36.
Step 2.2.1
Substitute 36 for x.
120⋅(36)2-25√36
Step 2.2.2
Simplify.
Step 2.2.2.1
Simplify each term.
Step 2.2.2.1.1
Raise 36 to the power of 2.
120⋅1296-25√36
Step 2.2.2.1.2
Cancel the common factor of 4.
Step 2.2.2.1.2.1
Factor 4 out of 20.
14(5)⋅1296-25√36
Step 2.2.2.1.2.2
Factor 4 out of 1296.
14⋅5⋅(4⋅324)-25√36
Step 2.2.2.1.2.3
Cancel the common factor.
14⋅5⋅(4⋅324)-25√36
Step 2.2.2.1.2.4
Rewrite the expression.
15⋅324-25√36
15⋅324-25√36
Step 2.2.2.1.3
Combine 15 and 324.
3245-25√36
Step 2.2.2.1.4
Rewrite 36 as 62.
3245-25√62
Step 2.2.2.1.5
Pull terms out from under the radical, assuming positive real numbers.
3245-25⋅6
Step 2.2.2.1.6
Multiply -25 by 6.
3245-150
3245-150
Step 2.2.2.2
To write -150 as a fraction with a common denominator, multiply by 55.
3245-150⋅55
Step 2.2.2.3
Combine -150 and 55.
3245+-150⋅55
Step 2.2.2.4
Combine the numerators over the common denominator.
324-150⋅55
Step 2.2.2.5
Simplify the numerator.
Step 2.2.2.5.1
Multiply -150 by 5.
324-7505
Step 2.2.2.5.2
Subtract 750 from 324.
-4265
-4265
Step 2.2.2.6
Move the negative in front of the fraction.
-4265
-4265
-4265
Step 2.3
List all of the points.
(0,0),(36,-4265)
(0,0),(36,-4265)
Step 3
Compare the g(x) values found for each value of x in order to determine the absolute maximum and minimum over the given interval. The maximum will occur at the highest g(x) value and the minimum will occur at the lowest g(x) value.
Absolute Maximum: (0,0)
Absolute Minimum: (25,-3754)
Step 4