Calculus Examples

Find the Absolute Max and Min over the Interval f(x)=x/(x^2+25) on -7 , 7
f(x)=xx2+25f(x)=xx2+25 on -77 , 77
Step 1
Find the critical points.
Tap for more steps...
Step 1.1
Find the first derivative.
Tap for more steps...
Step 1.1.1
Find the first derivative.
Tap for more steps...
Step 1.1.1.1
Differentiate using the Quotient Rule which states that ddx[f(x)g(x)]ddx[f(x)g(x)] is g(x)ddx[f(x)]-f(x)ddx[g(x)]g(x)2g(x)ddx[f(x)]f(x)ddx[g(x)]g(x)2 where f(x)=xf(x)=x and g(x)=x2+25g(x)=x2+25.
(x2+25)ddx[x]-xddx[x2+25](x2+25)2(x2+25)ddx[x]xddx[x2+25](x2+25)2
Step 1.1.1.2
Differentiate.
Tap for more steps...
Step 1.1.1.2.1
Differentiate using the Power Rule which states that ddx[xn]ddx[xn] is nxn-1nxn1 where n=1n=1.
(x2+25)1-xddx[x2+25](x2+25)2(x2+25)1xddx[x2+25](x2+25)2
Step 1.1.1.2.2
Multiply x2+25x2+25 by 11.
x2+25-xddx[x2+25](x2+25)2x2+25xddx[x2+25](x2+25)2
Step 1.1.1.2.3
By the Sum Rule, the derivative of x2+25x2+25 with respect to xx is ddx[x2]+ddx[25]ddx[x2]+ddx[25].
x2+25-x(ddx[x2]+ddx[25])(x2+25)2x2+25x(ddx[x2]+ddx[25])(x2+25)2
Step 1.1.1.2.4
Differentiate using the Power Rule which states that ddx[xn]ddx[xn] is nxn-1nxn1 where n=2n=2.
x2+25-x(2x+ddx[25])(x2+25)2x2+25x(2x+ddx[25])(x2+25)2
Step 1.1.1.2.5
Since 2525 is constant with respect to xx, the derivative of 2525 with respect to xx is 00.
x2+25-x(2x+0)(x2+25)2x2+25x(2x+0)(x2+25)2
Step 1.1.1.2.6
Simplify the expression.
Tap for more steps...
Step 1.1.1.2.6.1
Add 2x2x and 00.
x2+25-x(2x)(x2+25)2x2+25x(2x)(x2+25)2
Step 1.1.1.2.6.2
Multiply 22 by -11.
x2+25-2xx(x2+25)2x2+252xx(x2+25)2
x2+25-2xx(x2+25)2x2+252xx(x2+25)2
x2+25-2xx(x2+25)2x2+252xx(x2+25)2
Step 1.1.1.3
Raise xx to the power of 11.
x2+25-2(x1x)(x2+25)2x2+252(x1x)(x2+25)2
Step 1.1.1.4
Raise xx to the power of 11.
x2+25-2(x1x1)(x2+25)2x2+252(x1x1)(x2+25)2
Step 1.1.1.5
Use the power rule aman=am+naman=am+n to combine exponents.
x2+25-2x1+1(x2+25)2x2+252x1+1(x2+25)2
Step 1.1.1.6
Add 11 and 11.
x2+25-2x2(x2+25)2x2+252x2(x2+25)2
Step 1.1.1.7
Subtract 2x22x2 from x2x2.
f(x)=-x2+25(x2+25)2
f(x)=-x2+25(x2+25)2
Step 1.1.2
The first derivative of f(x) with respect to x is -x2+25(x2+25)2.
-x2+25(x2+25)2
-x2+25(x2+25)2
Step 1.2
Set the first derivative equal to 0 then solve the equation -x2+25(x2+25)2=0.
Tap for more steps...
Step 1.2.1
Set the first derivative equal to 0.
-x2+25(x2+25)2=0
Step 1.2.2
Set the numerator equal to zero.
-x2+25=0
Step 1.2.3
Solve the equation for x.
Tap for more steps...
Step 1.2.3.1
Subtract 25 from both sides of the equation.
-x2=-25
Step 1.2.3.2
Divide each term in -x2=-25 by -1 and simplify.
Tap for more steps...
Step 1.2.3.2.1
Divide each term in -x2=-25 by -1.
-x2-1=-25-1
Step 1.2.3.2.2
Simplify the left side.
Tap for more steps...
Step 1.2.3.2.2.1
Dividing two negative values results in a positive value.
x21=-25-1
Step 1.2.3.2.2.2
Divide x2 by 1.
x2=-25-1
x2=-25-1
Step 1.2.3.2.3
Simplify the right side.
Tap for more steps...
Step 1.2.3.2.3.1
Divide -25 by -1.
x2=25
x2=25
x2=25
Step 1.2.3.3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
x=±25
Step 1.2.3.4
Simplify ±25.
Tap for more steps...
Step 1.2.3.4.1
Rewrite 25 as 52.
x=±52
Step 1.2.3.4.2
Pull terms out from under the radical, assuming positive real numbers.
x=±5
x=±5
Step 1.2.3.5
The complete solution is the result of both the positive and negative portions of the solution.
Tap for more steps...
Step 1.2.3.5.1
First, use the positive value of the ± to find the first solution.
x=5
Step 1.2.3.5.2
Next, use the negative value of the ± to find the second solution.
x=-5
Step 1.2.3.5.3
The complete solution is the result of both the positive and negative portions of the solution.
x=5,-5
x=5,-5
x=5,-5
x=5,-5
Step 1.3
Find the values where the derivative is undefined.
Tap for more steps...
Step 1.3.1
The domain of the expression is all real numbers except where the expression is undefined. In this case, there is no real number that makes the expression undefined.
Step 1.4
Evaluate xx2+25 at each x value where the derivative is 0 or undefined.
Tap for more steps...
Step 1.4.1
Evaluate at x=5.
Tap for more steps...
Step 1.4.1.1
Substitute 5 for x.
5(5)2+25
Step 1.4.1.2
Simplify.
Tap for more steps...
Step 1.4.1.2.1
Simplify the denominator.
Tap for more steps...
Step 1.4.1.2.1.1
Raise 5 to the power of 2.
525+25
Step 1.4.1.2.1.2
Add 25 and 25.
550
550
Step 1.4.1.2.2
Cancel the common factor of 5 and 50.
Tap for more steps...
Step 1.4.1.2.2.1
Factor 5 out of 5.
5(1)50
Step 1.4.1.2.2.2
Cancel the common factors.
Tap for more steps...
Step 1.4.1.2.2.2.1
Factor 5 out of 50.
51510
Step 1.4.1.2.2.2.2
Cancel the common factor.
51510
Step 1.4.1.2.2.2.3
Rewrite the expression.
110
110
110
110
110
Step 1.4.2
Evaluate at x=-5.
Tap for more steps...
Step 1.4.2.1
Substitute -5 for x.
-5(-5)2+25
Step 1.4.2.2
Simplify.
Tap for more steps...
Step 1.4.2.2.1
Simplify the denominator.
Tap for more steps...
Step 1.4.2.2.1.1
Raise -5 to the power of 2.
-525+25
Step 1.4.2.2.1.2
Add 25 and 25.
-550
-550
Step 1.4.2.2.2
Reduce the expression by cancelling the common factors.
Tap for more steps...
Step 1.4.2.2.2.1
Cancel the common factor of -5 and 50.
Tap for more steps...
Step 1.4.2.2.2.1.1
Factor 5 out of -5.
5(-1)50
Step 1.4.2.2.2.1.2
Cancel the common factors.
Tap for more steps...
Step 1.4.2.2.2.1.2.1
Factor 5 out of 50.
5-1510
Step 1.4.2.2.2.1.2.2
Cancel the common factor.
5-1510
Step 1.4.2.2.2.1.2.3
Rewrite the expression.
-110
-110
-110
Step 1.4.2.2.2.2
Move the negative in front of the fraction.
-110
-110
-110
-110
Step 1.4.3
List all of the points.
(5,110),(-5,-110)
(5,110),(-5,-110)
(5,110),(-5,-110)
Step 2
Evaluate at the included endpoints.
Tap for more steps...
Step 2.1
Evaluate at x=-7.
Tap for more steps...
Step 2.1.1
Substitute -7 for x.
-7(-7)2+25
Step 2.1.2
Simplify.
Tap for more steps...
Step 2.1.2.1
Simplify the denominator.
Tap for more steps...
Step 2.1.2.1.1
Raise -7 to the power of 2.
-749+25
Step 2.1.2.1.2
Add 49 and 25.
-774
-774
Step 2.1.2.2
Move the negative in front of the fraction.
-774
-774
-774
Step 2.2
Evaluate at x=7.
Tap for more steps...
Step 2.2.1
Substitute 7 for x.
7(7)2+25
Step 2.2.2
Simplify the denominator.
Tap for more steps...
Step 2.2.2.1
Raise 7 to the power of 2.
749+25
Step 2.2.2.2
Add 49 and 25.
774
774
774
Step 2.3
List all of the points.
(-7,-774),(7,774)
(-7,-774),(7,774)
Step 3
Compare the f(x) values found for each value of x in order to determine the absolute maximum and minimum over the given interval. The maximum will occur at the highest f(x) value and the minimum will occur at the lowest f(x) value.
Absolute Maximum: (5,110)
Absolute Minimum: (-5,-110)
Step 4
 [x2  12  π  xdx ]