Enter a problem...
Calculus Examples
,
Step 1
Step 1.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.2
Apply basic rules of exponents.
Step 1.2.1
Rewrite as .
Step 1.2.2
Multiply the exponents in .
Step 1.2.2.1
Apply the power rule and multiply exponents, .
Step 1.2.2.2
Multiply by .
Step 1.3
Differentiate using the Power Rule which states that is where .
Step 1.4
Simplify terms.
Step 1.4.1
Multiply by .
Step 1.4.2
Combine and .
Step 1.4.3
Combine and .
Step 1.4.4
Move to the denominator using the negative exponent rule .
Step 1.4.5
Cancel the common factor of .
Step 1.4.5.1
Cancel the common factor.
Step 1.4.5.2
Rewrite the expression.
Step 1.5
Evaluate the derivative at .
Step 1.6
Raise to the power of .
Step 2
Step 2.1
Use the slope and a given point to substitute for and in the point-slope form , which is derived from the slope equation .
Step 2.2
Simplify the equation and keep it in point-slope form.
Step 2.3
Solve for .
Step 2.3.1
Simplify .
Step 2.3.1.1
Rewrite.
Step 2.3.1.2
Simplify by adding zeros.
Step 2.3.1.3
Apply the distributive property.
Step 2.3.1.4
Combine and .
Step 2.3.1.5
Cancel the common factor of .
Step 2.3.1.5.1
Factor out of .
Step 2.3.1.5.2
Cancel the common factor.
Step 2.3.1.5.3
Rewrite the expression.
Step 2.3.2
Move all terms not containing to the right side of the equation.
Step 2.3.2.1
Add to both sides of the equation.
Step 2.3.2.2
To write as a fraction with a common denominator, multiply by .
Step 2.3.2.3
Write each expression with a common denominator of , by multiplying each by an appropriate factor of .
Step 2.3.2.3.1
Multiply by .
Step 2.3.2.3.2
Multiply by .
Step 2.3.2.4
Combine the numerators over the common denominator.
Step 2.3.2.5
Add and .
Step 2.3.2.6
Cancel the common factor of and .
Step 2.3.2.6.1
Factor out of .
Step 2.3.2.6.2
Cancel the common factors.
Step 2.3.2.6.2.1
Factor out of .
Step 2.3.2.6.2.2
Cancel the common factor.
Step 2.3.2.6.2.3
Rewrite the expression.
Step 2.3.3
Reorder terms.
Step 3