Calculus Examples

Find the Tangent Line at x=1 y=x^(tan(x)) , x=1
y=xtan(x)y=xtan(x) , x=1x=1
Step 1
Find the corresponding yy-value to x=1x=1.
Tap for more steps...
Step 1.1
Substitute 11 in for xx.
y=(1)tan(1)y=(1)tan(1)
Step 1.2
Solve for yy.
Tap for more steps...
Step 1.2.1
Remove parentheses.
y=1tan(1)y=1tan(1)
Step 1.2.2
Remove parentheses.
y=(1)tan(1)y=(1)tan(1)
Step 1.2.3
Simplify (1)tan(1)(1)tan(1).
Tap for more steps...
Step 1.2.3.1
Evaluate tan(1)tan(1).
y=10.01745506y=10.01745506
Step 1.2.3.2
One to any power is one.
y=1y=1
y=1y=1
y=1y=1
y=1y=1
Step 2
Find the first derivative and evaluate at x=1x=1 and y=1y=1 to find the slope of the tangent line.
Tap for more steps...
Step 2.1
Use the properties of logarithms to simplify the differentiation.
Tap for more steps...
Step 2.1.1
Rewrite xtan(x)xtan(x) as eln(xtan(x))eln(xtan(x)).
ddx[eln(xtan(x))]ddx[eln(xtan(x))]
Step 2.1.2
Expand ln(xtan(x))ln(xtan(x)) by moving tan(x)tan(x) outside the logarithm.
ddx[etan(x)ln(x)]ddx[etan(x)ln(x)]
ddx[etan(x)ln(x)]ddx[etan(x)ln(x)]
Step 2.2
Differentiate using the chain rule, which states that ddx[f(g(x))]ddx[f(g(x))] is f(g(x))g(x) where f(x)=ex and g(x)=tan(x)ln(x).
Tap for more steps...
Step 2.2.1
To apply the Chain Rule, set u as tan(x)ln(x).
ddu[eu]ddx[tan(x)ln(x)]
Step 2.2.2
Differentiate using the Exponential Rule which states that ddu[au] is auln(a) where a=e.
euddx[tan(x)ln(x)]
Step 2.2.3
Replace all occurrences of u with tan(x)ln(x).
etan(x)ln(x)ddx[tan(x)ln(x)]
etan(x)ln(x)ddx[tan(x)ln(x)]
Step 2.3
Differentiate using the Product Rule which states that ddx[f(x)g(x)] is f(x)ddx[g(x)]+g(x)ddx[f(x)] where f(x)=tan(x) and g(x)=ln(x).
etan(x)ln(x)(tan(x)ddx[ln(x)]+ln(x)ddx[tan(x)])
Step 2.4
The derivative of ln(x) with respect to x is 1x.
etan(x)ln(x)(tan(x)1x+ln(x)ddx[tan(x)])
Step 2.5
Combine tan(x) and 1x.
etan(x)ln(x)(tan(x)x+ln(x)ddx[tan(x)])
Step 2.6
The derivative of tan(x) with respect to x is sec2(x).
etan(x)ln(x)(tan(x)x+ln(x)sec2(x))
Step 2.7
Simplify.
Tap for more steps...
Step 2.7.1
Apply the distributive property.
etan(x)ln(x)tan(x)x+etan(x)ln(x)(ln(x)sec2(x))
Step 2.7.2
Combine etan(x)ln(x) and tan(x)x.
etan(x)ln(x)tan(x)x+etan(x)ln(x)ln(x)sec2(x)
Step 2.7.3
Reorder terms.
etan(x)ln(x)sec2(x)ln(x)+etan(x)ln(x)tan(x)x
etan(x)ln(x)sec2(x)ln(x)+etan(x)ln(x)tan(x)x
Step 2.8
Evaluate the derivative at x=1.
etan(1)ln(1)sec2(1)ln(1)+etan(1)ln(1)tan(1)1
Step 2.9
Simplify.
Tap for more steps...
Step 2.9.1
Simplify each term.
Tap for more steps...
Step 2.9.1.1
Evaluate tan(1).
e0.01745506ln(1)sec2(1)ln(1)+etan(1)ln(1)tan(1)1
Step 2.9.1.2
Simplify 0.01745506ln(1) by moving 0.01745506 inside the logarithm.
eln(10.01745506)sec2(1)ln(1)+etan(1)ln(1)tan(1)1
Step 2.9.1.3
Exponentiation and log are inverse functions.
10.01745506sec2(1)ln(1)+etan(1)ln(1)tan(1)1
Step 2.9.1.4
One to any power is one.
1sec2(1)ln(1)+etan(1)ln(1)tan(1)1
Step 2.9.1.5
Multiply sec2(1) by 1.
sec2(1)ln(1)+etan(1)ln(1)tan(1)1
Step 2.9.1.6
Evaluate sec(1).
1.000152322ln(1)+etan(1)ln(1)tan(1)1
Step 2.9.1.7
Raise 1.00015232 to the power of 2.
1.00030467ln(1)+etan(1)ln(1)tan(1)1
Step 2.9.1.8
The natural logarithm of 1 is 0.
1.000304670+etan(1)ln(1)tan(1)1
Step 2.9.1.9
Multiply 1.00030467 by 0.
0+etan(1)ln(1)tan(1)1
Step 2.9.1.10
Divide etan(1)ln(1)tan(1) by 1.
0+etan(1)ln(1)tan(1)
Step 2.9.1.11
Evaluate tan(1).
0+e0.01745506ln(1)tan(1)
Step 2.9.1.12
Simplify 0.01745506ln(1) by moving 0.01745506 inside the logarithm.
0+eln(10.01745506)tan(1)
Step 2.9.1.13
Exponentiation and log are inverse functions.
0+10.01745506tan(1)
Step 2.9.1.14
One to any power is one.
0+1tan(1)
Step 2.9.1.15
Multiply tan(1) by 1.
0+tan(1)
Step 2.9.1.16
Evaluate tan(1).
0+0.01745506
0+0.01745506
Step 2.9.2
Add 0 and 0.01745506.
0.01745506
0.01745506
0.01745506
Step 3
Plug the slope and point values into the point-slope formula and solve for y.
Tap for more steps...
Step 3.1
Use the slope 0.01745506 and a given point (1,1) to substitute for x1 and y1 in the point-slope form y-y1=m(x-x1), which is derived from the slope equation m=y2-y1x2-x1.
y-(1)=0.01745506(x-(1))
Step 3.2
Simplify the equation and keep it in point-slope form.
y-1=0.01745506(x-1)
Step 3.3
Solve for y.
Tap for more steps...
Step 3.3.1
Simplify 0.01745506(x-1).
Tap for more steps...
Step 3.3.1.1
Rewrite.
y-1=0+0+0.01745506(x-1)
Step 3.3.1.2
Simplify by adding zeros.
y-1=0.01745506(x-1)
Step 3.3.1.3
Apply the distributive property.
y-1=0.01745506x+0.01745506-1
Step 3.3.1.4
Multiply 0.01745506 by -1.
y-1=0.01745506x-0.01745506
y-1=0.01745506x-0.01745506
Step 3.3.2
Move all terms not containing y to the right side of the equation.
Tap for more steps...
Step 3.3.2.1
Add 1 to both sides of the equation.
y=0.01745506x-0.01745506+1
Step 3.3.2.2
Add -0.01745506 and 1.
y=0.01745506x+0.98254493
y=0.01745506x+0.98254493
y=0.01745506x+0.98254493
y=0.01745506x+0.98254493
Step 4
 [x2  12  π  xdx ]