Enter a problem...
Calculus Examples
y=xtan(x)y=xtan(x) , x=1x=1
Step 1
Step 1.1
Substitute 11 in for xx.
y=(1)tan(1)y=(1)tan(1)
Step 1.2
Solve for yy.
Step 1.2.1
Remove parentheses.
y=1tan(1)y=1tan(1)
Step 1.2.2
Remove parentheses.
y=(1)tan(1)y=(1)tan(1)
Step 1.2.3
Simplify (1)tan(1)(1)tan(1).
Step 1.2.3.1
Evaluate tan(1)tan(1).
y=10.01745506y=10.01745506
Step 1.2.3.2
One to any power is one.
y=1y=1
y=1y=1
y=1y=1
y=1y=1
Step 2
Step 2.1
Use the properties of logarithms to simplify the differentiation.
Step 2.1.1
Rewrite xtan(x)xtan(x) as eln(xtan(x))eln(xtan(x)).
ddx[eln(xtan(x))]ddx[eln(xtan(x))]
Step 2.1.2
Expand ln(xtan(x))ln(xtan(x)) by moving tan(x)tan(x) outside the logarithm.
ddx[etan(x)ln(x)]ddx[etan(x)ln(x)]
ddx[etan(x)ln(x)]ddx[etan(x)ln(x)]
Step 2.2
Differentiate using the chain rule, which states that ddx[f(g(x))]ddx[f(g(x))] is f′(g(x))g′(x) where f(x)=ex and g(x)=tan(x)ln(x).
Step 2.2.1
To apply the Chain Rule, set u as tan(x)ln(x).
ddu[eu]ddx[tan(x)ln(x)]
Step 2.2.2
Differentiate using the Exponential Rule which states that ddu[au] is auln(a) where a=e.
euddx[tan(x)ln(x)]
Step 2.2.3
Replace all occurrences of u with tan(x)ln(x).
etan(x)ln(x)ddx[tan(x)ln(x)]
etan(x)ln(x)ddx[tan(x)ln(x)]
Step 2.3
Differentiate using the Product Rule which states that ddx[f(x)g(x)] is f(x)ddx[g(x)]+g(x)ddx[f(x)] where f(x)=tan(x) and g(x)=ln(x).
etan(x)ln(x)(tan(x)ddx[ln(x)]+ln(x)ddx[tan(x)])
Step 2.4
The derivative of ln(x) with respect to x is 1x.
etan(x)ln(x)(tan(x)1x+ln(x)ddx[tan(x)])
Step 2.5
Combine tan(x) and 1x.
etan(x)ln(x)(tan(x)x+ln(x)ddx[tan(x)])
Step 2.6
The derivative of tan(x) with respect to x is sec2(x).
etan(x)ln(x)(tan(x)x+ln(x)sec2(x))
Step 2.7
Simplify.
Step 2.7.1
Apply the distributive property.
etan(x)ln(x)tan(x)x+etan(x)ln(x)(ln(x)sec2(x))
Step 2.7.2
Combine etan(x)ln(x) and tan(x)x.
etan(x)ln(x)tan(x)x+etan(x)ln(x)ln(x)sec2(x)
Step 2.7.3
Reorder terms.
etan(x)ln(x)sec2(x)ln(x)+etan(x)ln(x)tan(x)x
etan(x)ln(x)sec2(x)ln(x)+etan(x)ln(x)tan(x)x
Step 2.8
Evaluate the derivative at x=1.
etan(1)ln(1)sec2(1)ln(1)+etan(1)ln(1)tan(1)1
Step 2.9
Simplify.
Step 2.9.1
Simplify each term.
Step 2.9.1.1
Evaluate tan(1).
e0.01745506ln(1)sec2(1)ln(1)+etan(1)ln(1)tan(1)1
Step 2.9.1.2
Simplify 0.01745506ln(1) by moving 0.01745506 inside the logarithm.
eln(10.01745506)sec2(1)ln(1)+etan(1)ln(1)tan(1)1
Step 2.9.1.3
Exponentiation and log are inverse functions.
10.01745506sec2(1)ln(1)+etan(1)ln(1)tan(1)1
Step 2.9.1.4
One to any power is one.
1sec2(1)ln(1)+etan(1)ln(1)tan(1)1
Step 2.9.1.5
Multiply sec2(1) by 1.
sec2(1)ln(1)+etan(1)ln(1)tan(1)1
Step 2.9.1.6
Evaluate sec(1).
1.000152322ln(1)+etan(1)ln(1)tan(1)1
Step 2.9.1.7
Raise 1.00015232 to the power of 2.
1.00030467ln(1)+etan(1)ln(1)tan(1)1
Step 2.9.1.8
The natural logarithm of 1 is 0.
1.00030467⋅0+etan(1)ln(1)tan(1)1
Step 2.9.1.9
Multiply 1.00030467 by 0.
0+etan(1)ln(1)tan(1)1
Step 2.9.1.10
Divide etan(1)ln(1)tan(1) by 1.
0+etan(1)ln(1)tan(1)
Step 2.9.1.11
Evaluate tan(1).
0+e0.01745506ln(1)tan(1)
Step 2.9.1.12
Simplify 0.01745506ln(1) by moving 0.01745506 inside the logarithm.
0+eln(10.01745506)tan(1)
Step 2.9.1.13
Exponentiation and log are inverse functions.
0+10.01745506tan(1)
Step 2.9.1.14
One to any power is one.
0+1tan(1)
Step 2.9.1.15
Multiply tan(1) by 1.
0+tan(1)
Step 2.9.1.16
Evaluate tan(1).
0+0.01745506
0+0.01745506
Step 2.9.2
Add 0 and 0.01745506.
0.01745506
0.01745506
0.01745506
Step 3
Step 3.1
Use the slope 0.01745506 and a given point (1,1) to substitute for x1 and y1 in the point-slope form y-y1=m(x-x1), which is derived from the slope equation m=y2-y1x2-x1.
y-(1)=0.01745506⋅(x-(1))
Step 3.2
Simplify the equation and keep it in point-slope form.
y-1=0.01745506⋅(x-1)
Step 3.3
Solve for y.
Step 3.3.1
Simplify 0.01745506⋅(x-1).
Step 3.3.1.1
Rewrite.
y-1=0+0+0.01745506⋅(x-1)
Step 3.3.1.2
Simplify by adding zeros.
y-1=0.01745506⋅(x-1)
Step 3.3.1.3
Apply the distributive property.
y-1=0.01745506x+0.01745506⋅-1
Step 3.3.1.4
Multiply 0.01745506 by -1.
y-1=0.01745506x-0.01745506
y-1=0.01745506x-0.01745506
Step 3.3.2
Move all terms not containing y to the right side of the equation.
Step 3.3.2.1
Add 1 to both sides of the equation.
y=0.01745506x-0.01745506+1
Step 3.3.2.2
Add -0.01745506 and 1.
y=0.01745506x+0.98254493
y=0.01745506x+0.98254493
y=0.01745506x+0.98254493
y=0.01745506x+0.98254493
Step 4