Enter a problem...
Calculus Examples
x3+y3=34xyx3+y3=34xy ; (17,17)
Step 1
Step 1.1
Differentiate both sides of the equation.
ddx(x3+y3)=ddx(34xy)
Step 1.2
Differentiate the left side of the equation.
Step 1.2.1
Differentiate.
Step 1.2.1.1
By the Sum Rule, the derivative of x3+y3 with respect to x is ddx[x3]+ddx[y3].
ddx[x3]+ddx[y3]
Step 1.2.1.2
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=3.
3x2+ddx[y3]
3x2+ddx[y3]
Step 1.2.2
Evaluate ddx[y3].
Step 1.2.2.1
Differentiate using the chain rule, which states that ddx[f(g(x))] is f′(g(x))g′(x) where f(x)=x3 and g(x)=y.
Step 1.2.2.1.1
To apply the Chain Rule, set u as y.
3x2+ddu[u3]ddx[y]
Step 1.2.2.1.2
Differentiate using the Power Rule which states that ddu[un] is nun-1 where n=3.
3x2+3u2ddx[y]
Step 1.2.2.1.3
Replace all occurrences of u with y.
3x2+3y2ddx[y]
3x2+3y2ddx[y]
Step 1.2.2.2
Rewrite ddx[y] as y′.
3x2+3y2y′
3x2+3y2y′
3x2+3y2y′
Step 1.3
Differentiate the right side of the equation.
Step 1.3.1
Since 34 is constant with respect to x, the derivative of 34xy with respect to x is 34ddx[xy].
34ddx[xy]
Step 1.3.2
Differentiate using the Product Rule which states that ddx[f(x)g(x)] is f(x)ddx[g(x)]+g(x)ddx[f(x)] where f(x)=x and g(x)=y.
34(xddx[y]+yddx[x])
Step 1.3.3
Rewrite ddx[y] as y′.
34(xy′+yddx[x])
Step 1.3.4
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=1.
34(xy′+y⋅1)
Step 1.3.5
Multiply y by 1.
34(xy′+y)
Step 1.3.6
Apply the distributive property.
34xy′+34y
34xy′+34y
Step 1.4
Reform the equation by setting the left side equal to the right side.
3x2+3y2y′=34xy′+34y
Step 1.5
Solve for y′.
Step 1.5.1
Subtract 34xy′ from both sides of the equation.
3x2+3y2y′-34xy′=34y
Step 1.5.2
Subtract 3x2 from both sides of the equation.
3y2y′-34xy′=34y-3x2
Step 1.5.3
Factor y′ out of 3y2y′-34xy′.
Step 1.5.3.1
Factor y′ out of 3y2y′.
y′(3y2)-34xy′=34y-3x2
Step 1.5.3.2
Factor y′ out of -34xy′.
y′(3y2)+y′(-34x)=34y-3x2
Step 1.5.3.3
Factor y′ out of y′(3y2)+y′(-34x).
y′(3y2-34x)=34y-3x2
y′(3y2-34x)=34y-3x2
Step 1.5.4
Divide each term in y′(3y2-34x)=34y-3x2 by 3y2-34x and simplify.
Step 1.5.4.1
Divide each term in y′(3y2-34x)=34y-3x2 by 3y2-34x.
y′(3y2-34x)3y2-34x=34y3y2-34x+-3x23y2-34x
Step 1.5.4.2
Simplify the left side.
Step 1.5.4.2.1
Cancel the common factor of 3y2-34x.
Step 1.5.4.2.1.1
Cancel the common factor.
y′(3y2-34x)3y2-34x=34y3y2-34x+-3x23y2-34x
Step 1.5.4.2.1.2
Divide y′ by 1.
y′=34y3y2-34x+-3x23y2-34x
y′=34y3y2-34x+-3x23y2-34x
y′=34y3y2-34x+-3x23y2-34x
Step 1.5.4.3
Simplify the right side.
Step 1.5.4.3.1
Combine the numerators over the common denominator.
y′=34y-3x23y2-34x
y′=34y-3x23y2-34x
y′=34y-3x23y2-34x
y′=34y-3x23y2-34x
Step 1.6
Replace y′ with dydx.
dydx=34y-3x23y2-34x
Step 1.7
Evaluate at x=17 and y=17.
Step 1.7.1
Replace the variable x with 17 in the expression.
34y-3(17)23y2-34⋅17
Step 1.7.2
Replace the variable y with 17 in the expression.
34(17)-3(17)23(17)2-34⋅17
Step 1.7.3
Cancel the common factor of 34(17)-3(17)2 and 3(17)2-34⋅17.
Step 1.7.3.1
Reorder terms.
-3(17)2+17⋅343(17)2-34⋅17
Step 1.7.3.2
Factor 17 out of -3(17)2.
17(-3⋅17)+17⋅343(17)2-34⋅17
Step 1.7.3.3
Factor 17 out of 17⋅34.
17(-3⋅17)+17(34)3(17)2-34⋅17
Step 1.7.3.4
Factor 17 out of 17(-3⋅17)+17(34).
17(-3⋅17+34)3(17)2-34⋅17
Step 1.7.3.5
Cancel the common factors.
Step 1.7.3.5.1
Factor 17 out of 3(17)2.
17(-3⋅17+34)17(3⋅17)-34⋅17
Step 1.7.3.5.2
Factor 17 out of -34⋅17.
17(-3⋅17+34)17(3⋅17)+17(-2⋅17)
Step 1.7.3.5.3
Factor 17 out of 17(3⋅17)+17(-2⋅17).
17(-3⋅17+34)17(3⋅17-2⋅17)
Step 1.7.3.5.4
Cancel the common factor.
17(-3⋅17+34)17(3⋅17-2⋅17)
Step 1.7.3.5.5
Rewrite the expression.
-3⋅17+343⋅17-2⋅17
-3⋅17+343⋅17-2⋅17
-3⋅17+343⋅17-2⋅17
Step 1.7.4
Simplify the numerator.
Step 1.7.4.1
Multiply -3 by 17.
-51+343⋅17-2⋅17
Step 1.7.4.2
Add -51 and 34.
-173⋅17-2⋅17
-173⋅17-2⋅17
Step 1.7.5
Simplify the denominator.
Step 1.7.5.1
Multiply 3 by 17.
-1751-2⋅17
Step 1.7.5.2
Multiply -2 by 17.
-1751-34
Step 1.7.5.3
Subtract 34 from 51.
-1717
-1717
Step 1.7.6
Divide -17 by 17.
-1
-1
-1
Step 2
Step 2.1
Use the slope -1 and a given point (17,17) to substitute for x1 and y1 in the point-slope form y-y1=m(x-x1), which is derived from the slope equation m=y2-y1x2-x1.
y-(17)=-1⋅(x-(17))
Step 2.2
Simplify the equation and keep it in point-slope form.
y-17=-1⋅(x-17)
Step 2.3
Solve for y.
Step 2.3.1
Simplify -1⋅(x-17).
Step 2.3.1.1
Rewrite.
y-17=0+0-1⋅(x-17)
Step 2.3.1.2
Simplify by adding zeros.
y-17=-1⋅(x-17)
Step 2.3.1.3
Apply the distributive property.
y-17=-1x-1⋅-17
Step 2.3.1.4
Simplify the expression.
Step 2.3.1.4.1
Rewrite -1x as -x.
y-17=-x-1⋅-17
Step 2.3.1.4.2
Multiply -1 by -17.
y-17=-x+17
y-17=-x+17
y-17=-x+17
Step 2.3.2
Move all terms not containing y to the right side of the equation.
Step 2.3.2.1
Add 17 to both sides of the equation.
y=-x+17+17
Step 2.3.2.2
Add 17 and 17.
y=-x+34
y=-x+34
y=-x+34
y=-x+34
Step 3