Calculus Examples

Find the Tangent Line at (17,17) x^3+y^3=34xy ; (17,17)
x3+y3=34xyx3+y3=34xy ; (17,17)
Step 1
Find the first derivative and evaluate at x=17 and y=17 to find the slope of the tangent line.
Tap for more steps...
Step 1.1
Differentiate both sides of the equation.
ddx(x3+y3)=ddx(34xy)
Step 1.2
Differentiate the left side of the equation.
Tap for more steps...
Step 1.2.1
Differentiate.
Tap for more steps...
Step 1.2.1.1
By the Sum Rule, the derivative of x3+y3 with respect to x is ddx[x3]+ddx[y3].
ddx[x3]+ddx[y3]
Step 1.2.1.2
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=3.
3x2+ddx[y3]
3x2+ddx[y3]
Step 1.2.2
Evaluate ddx[y3].
Tap for more steps...
Step 1.2.2.1
Differentiate using the chain rule, which states that ddx[f(g(x))] is f(g(x))g(x) where f(x)=x3 and g(x)=y.
Tap for more steps...
Step 1.2.2.1.1
To apply the Chain Rule, set u as y.
3x2+ddu[u3]ddx[y]
Step 1.2.2.1.2
Differentiate using the Power Rule which states that ddu[un] is nun-1 where n=3.
3x2+3u2ddx[y]
Step 1.2.2.1.3
Replace all occurrences of u with y.
3x2+3y2ddx[y]
3x2+3y2ddx[y]
Step 1.2.2.2
Rewrite ddx[y] as y.
3x2+3y2y
3x2+3y2y
3x2+3y2y
Step 1.3
Differentiate the right side of the equation.
Tap for more steps...
Step 1.3.1
Since 34 is constant with respect to x, the derivative of 34xy with respect to x is 34ddx[xy].
34ddx[xy]
Step 1.3.2
Differentiate using the Product Rule which states that ddx[f(x)g(x)] is f(x)ddx[g(x)]+g(x)ddx[f(x)] where f(x)=x and g(x)=y.
34(xddx[y]+yddx[x])
Step 1.3.3
Rewrite ddx[y] as y.
34(xy+yddx[x])
Step 1.3.4
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=1.
34(xy+y1)
Step 1.3.5
Multiply y by 1.
34(xy+y)
Step 1.3.6
Apply the distributive property.
34xy+34y
34xy+34y
Step 1.4
Reform the equation by setting the left side equal to the right side.
3x2+3y2y=34xy+34y
Step 1.5
Solve for y.
Tap for more steps...
Step 1.5.1
Subtract 34xy from both sides of the equation.
3x2+3y2y-34xy=34y
Step 1.5.2
Subtract 3x2 from both sides of the equation.
3y2y-34xy=34y-3x2
Step 1.5.3
Factor y out of 3y2y-34xy.
Tap for more steps...
Step 1.5.3.1
Factor y out of 3y2y.
y(3y2)-34xy=34y-3x2
Step 1.5.3.2
Factor y out of -34xy.
y(3y2)+y(-34x)=34y-3x2
Step 1.5.3.3
Factor y out of y(3y2)+y(-34x).
y(3y2-34x)=34y-3x2
y(3y2-34x)=34y-3x2
Step 1.5.4
Divide each term in y(3y2-34x)=34y-3x2 by 3y2-34x and simplify.
Tap for more steps...
Step 1.5.4.1
Divide each term in y(3y2-34x)=34y-3x2 by 3y2-34x.
y(3y2-34x)3y2-34x=34y3y2-34x+-3x23y2-34x
Step 1.5.4.2
Simplify the left side.
Tap for more steps...
Step 1.5.4.2.1
Cancel the common factor of 3y2-34x.
Tap for more steps...
Step 1.5.4.2.1.1
Cancel the common factor.
y(3y2-34x)3y2-34x=34y3y2-34x+-3x23y2-34x
Step 1.5.4.2.1.2
Divide y by 1.
y=34y3y2-34x+-3x23y2-34x
y=34y3y2-34x+-3x23y2-34x
y=34y3y2-34x+-3x23y2-34x
Step 1.5.4.3
Simplify the right side.
Tap for more steps...
Step 1.5.4.3.1
Combine the numerators over the common denominator.
y=34y-3x23y2-34x
y=34y-3x23y2-34x
y=34y-3x23y2-34x
y=34y-3x23y2-34x
Step 1.6
Replace y with dydx.
dydx=34y-3x23y2-34x
Step 1.7
Evaluate at x=17 and y=17.
Tap for more steps...
Step 1.7.1
Replace the variable x with 17 in the expression.
34y-3(17)23y2-3417
Step 1.7.2
Replace the variable y with 17 in the expression.
34(17)-3(17)23(17)2-3417
Step 1.7.3
Cancel the common factor of 34(17)-3(17)2 and 3(17)2-3417.
Tap for more steps...
Step 1.7.3.1
Reorder terms.
-3(17)2+17343(17)2-3417
Step 1.7.3.2
Factor 17 out of -3(17)2.
17(-317)+17343(17)2-3417
Step 1.7.3.3
Factor 17 out of 1734.
17(-317)+17(34)3(17)2-3417
Step 1.7.3.4
Factor 17 out of 17(-317)+17(34).
17(-317+34)3(17)2-3417
Step 1.7.3.5
Cancel the common factors.
Tap for more steps...
Step 1.7.3.5.1
Factor 17 out of 3(17)2.
17(-317+34)17(317)-3417
Step 1.7.3.5.2
Factor 17 out of -3417.
17(-317+34)17(317)+17(-217)
Step 1.7.3.5.3
Factor 17 out of 17(317)+17(-217).
17(-317+34)17(317-217)
Step 1.7.3.5.4
Cancel the common factor.
17(-317+34)17(317-217)
Step 1.7.3.5.5
Rewrite the expression.
-317+34317-217
-317+34317-217
-317+34317-217
Step 1.7.4
Simplify the numerator.
Tap for more steps...
Step 1.7.4.1
Multiply -3 by 17.
-51+34317-217
Step 1.7.4.2
Add -51 and 34.
-17317-217
-17317-217
Step 1.7.5
Simplify the denominator.
Tap for more steps...
Step 1.7.5.1
Multiply 3 by 17.
-1751-217
Step 1.7.5.2
Multiply -2 by 17.
-1751-34
Step 1.7.5.3
Subtract 34 from 51.
-1717
-1717
Step 1.7.6
Divide -17 by 17.
-1
-1
-1
Step 2
Plug the slope and point values into the point-slope formula and solve for y.
Tap for more steps...
Step 2.1
Use the slope -1 and a given point (17,17) to substitute for x1 and y1 in the point-slope form y-y1=m(x-x1), which is derived from the slope equation m=y2-y1x2-x1.
y-(17)=-1(x-(17))
Step 2.2
Simplify the equation and keep it in point-slope form.
y-17=-1(x-17)
Step 2.3
Solve for y.
Tap for more steps...
Step 2.3.1
Simplify -1(x-17).
Tap for more steps...
Step 2.3.1.1
Rewrite.
y-17=0+0-1(x-17)
Step 2.3.1.2
Simplify by adding zeros.
y-17=-1(x-17)
Step 2.3.1.3
Apply the distributive property.
y-17=-1x-1-17
Step 2.3.1.4
Simplify the expression.
Tap for more steps...
Step 2.3.1.4.1
Rewrite -1x as -x.
y-17=-x-1-17
Step 2.3.1.4.2
Multiply -1 by -17.
y-17=-x+17
y-17=-x+17
y-17=-x+17
Step 2.3.2
Move all terms not containing y to the right side of the equation.
Tap for more steps...
Step 2.3.2.1
Add 17 to both sides of the equation.
y=-x+17+17
Step 2.3.2.2
Add 17 and 17.
y=-x+34
y=-x+34
y=-x+34
y=-x+34
Step 3
 [x2  12  π  xdx ]