Enter a problem...
Calculus Examples
y=1(x2-1)3y=1(x2−1)3 ; x=2x=2
Step 1
Step 1.1
Substitute 22 in for xx.
y=1((2)2-1)3y=1((2)2−1)3
Step 1.2
Solve for yy.
Step 1.2.1
Remove parentheses.
y=1(22-1)3y=1(22−1)3
Step 1.2.2
Remove parentheses.
y=1((2)2-1)3y=1((2)2−1)3
Step 1.2.3
Simplify the denominator.
Step 1.2.3.1
Raise 22 to the power of 22.
y=1(4-1)3y=1(4−1)3
Step 1.2.3.2
Subtract 11 from 44.
y=133y=133
Step 1.2.3.3
Raise 33 to the power of 33.
y=127y=127
y=127y=127
y=127y=127
y=127y=127
Step 2
Step 2.1
Apply basic rules of exponents.
Step 2.1.1
Rewrite 1(x2-1)31(x2−1)3 as ((x2-1)3)-1((x2−1)3)−1.
ddx[((x2-1)3)-1]ddx[((x2−1)3)−1]
Step 2.1.2
Multiply the exponents in ((x2-1)3)-1((x2−1)3)−1.
Step 2.1.2.1
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
ddx[(x2-1)3⋅-1]ddx[(x2−1)3⋅−1]
Step 2.1.2.2
Multiply 33 by -1−1.
ddx[(x2-1)-3]ddx[(x2−1)−3]
ddx[(x2-1)-3]ddx[(x2−1)−3]
ddx[(x2-1)-3]ddx[(x2−1)−3]
Step 2.2
Differentiate using the chain rule, which states that ddx[f(g(x))]ddx[f(g(x))] is f′(g(x))g′(x) where f(x)=x-3 and g(x)=x2-1.
Step 2.2.1
To apply the Chain Rule, set u as x2-1.
ddu[u-3]ddx[x2-1]
Step 2.2.2
Differentiate using the Power Rule which states that ddu[un] is nun-1 where n=-3.
-3u-4ddx[x2-1]
Step 2.2.3
Replace all occurrences of u with x2-1.
-3(x2-1)-4ddx[x2-1]
-3(x2-1)-4ddx[x2-1]
Step 2.3
Differentiate.
Step 2.3.1
By the Sum Rule, the derivative of x2-1 with respect to x is ddx[x2]+ddx[-1].
-3(x2-1)-4(ddx[x2]+ddx[-1])
Step 2.3.2
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=2.
-3(x2-1)-4(2x+ddx[-1])
Step 2.3.3
Since -1 is constant with respect to x, the derivative of -1 with respect to x is 0.
-3(x2-1)-4(2x+0)
Step 2.3.4
Simplify the expression.
Step 2.3.4.1
Add 2x and 0.
-3(x2-1)-4(2x)
Step 2.3.4.2
Multiply 2 by -3.
-6(x2-1)-4x
-6(x2-1)-4x
-6(x2-1)-4x
Step 2.4
Rewrite the expression using the negative exponent rule b-n=1bn.
-61(x2-1)4x
Step 2.5
Combine terms.
Step 2.5.1
Combine -6 and 1(x2-1)4.
-6(x2-1)4x
Step 2.5.2
Move the negative in front of the fraction.
-6(x2-1)4x
Step 2.5.3
Combine x and 6(x2-1)4.
-x⋅6(x2-1)4
Step 2.5.4
Move 6 to the left of x.
-6x(x2-1)4
-6x(x2-1)4
Step 2.6
Evaluate the derivative at x=2.
-6(2)((2)2-1)4
Step 2.7
Simplify.
Step 2.7.1
Multiply 6 by 2.
-12(22-1)4
Step 2.7.2
Simplify the denominator.
Step 2.7.2.1
Raise 2 to the power of 2.
-12(4-1)4
Step 2.7.2.2
Subtract 1 from 4.
-1234
Step 2.7.2.3
Raise 3 to the power of 4.
-1281
-1281
Step 2.7.3
Cancel the common factor of 12 and 81.
Step 2.7.3.1
Factor 3 out of 12.
-3(4)81
Step 2.7.3.2
Cancel the common factors.
Step 2.7.3.2.1
Factor 3 out of 81.
-3⋅43⋅27
Step 2.7.3.2.2
Cancel the common factor.
-3⋅43⋅27
Step 2.7.3.2.3
Rewrite the expression.
-427
-427
-427
-427
-427
Step 3
Step 3.1
Use the slope -427 and a given point (2,127) to substitute for x1 and y1 in the point-slope form y-y1=m(x-x1), which is derived from the slope equation m=y2-y1x2-x1.
y-(127)=-427⋅(x-(2))
Step 3.2
Simplify the equation and keep it in point-slope form.
y-127=-427⋅(x-2)
Step 3.3
Solve for y.
Step 3.3.1
Simplify -427⋅(x-2).
Step 3.3.1.1
Rewrite.
y-127=0+0-427⋅(x-2)
Step 3.3.1.2
Simplify by adding zeros.
y-127=-427⋅(x-2)
Step 3.3.1.3
Apply the distributive property.
y-127=-427x-427⋅-2
Step 3.3.1.4
Combine x and 427.
y-127=-x⋅427-427⋅-2
Step 3.3.1.5
Multiply -427⋅-2.
Step 3.3.1.5.1
Multiply -2 by -1.
y-127=-x⋅427+2(427)
Step 3.3.1.5.2
Combine 2 and 427.
y-127=-x⋅427+2⋅427
Step 3.3.1.5.3
Multiply 2 by 4.
y-127=-x⋅427+827
y-127=-x⋅427+827
Step 3.3.1.6
Move 4 to the left of x.
y-127=-4x27+827
y-127=-4x27+827
Step 3.3.2
Move all terms not containing y to the right side of the equation.
Step 3.3.2.1
Add 127 to both sides of the equation.
y=-4x27+827+127
Step 3.3.2.2
Combine the numerators over the common denominator.
y=-4x+8+127
Step 3.3.2.3
Add 8 and 1.
y=-4x+927
Step 3.3.2.4
Split the fraction -4x+927 into two fractions.
y=-4x27+927
Step 3.3.2.5
Simplify each term.
Step 3.3.2.5.1
Move the negative in front of the fraction.
y=-4x27+927
Step 3.3.2.5.2
Cancel the common factor of 9 and 27.
Step 3.3.2.5.2.1
Factor 9 out of 9.
y=-4x27+9(1)27
Step 3.3.2.5.2.2
Cancel the common factors.
Step 3.3.2.5.2.2.1
Factor 9 out of 27.
y=-4x27+9⋅19⋅3
Step 3.3.2.5.2.2.2
Cancel the common factor.
y=-4x27+9⋅19⋅3
Step 3.3.2.5.2.2.3
Rewrite the expression.
y=-4x27+13
y=-4x27+13
y=-4x27+13
y=-4x27+13
y=-4x27+13
Step 3.3.3
Write in y=mx+b form.
Step 3.3.3.1
Reorder terms.
y=-(427x)+13
Step 3.3.3.2
Remove parentheses.
y=-427x+13
y=-427x+13
y=-427x+13
y=-427x+13
Step 4