Enter a problem...
Calculus Examples
y=√xx+3y=√xx+3 , (1,0.25)
Step 1
Step 1.1
Use n√ax=axn to rewrite √x as x12.
ddx[x12x+3]
Step 1.2
Differentiate using the Quotient Rule which states that ddx[f(x)g(x)] is g(x)ddx[f(x)]-f(x)ddx[g(x)]g(x)2 where f(x)=x12 and g(x)=x+3.
(x+3)ddx[x12]-x12ddx[x+3](x+3)2
Step 1.3
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=12.
(x+3)(12x12-1)-x12ddx[x+3](x+3)2
Step 1.4
To write -1 as a fraction with a common denominator, multiply by 22.
(x+3)(12x12-1⋅22)-x12ddx[x+3](x+3)2
Step 1.5
Combine -1 and 22.
(x+3)(12x12+-1⋅22)-x12ddx[x+3](x+3)2
Step 1.6
Combine the numerators over the common denominator.
(x+3)(12x1-1⋅22)-x12ddx[x+3](x+3)2
Step 1.7
Simplify the numerator.
Step 1.7.1
Multiply -1 by 2.
(x+3)(12x1-22)-x12ddx[x+3](x+3)2
Step 1.7.2
Subtract 2 from 1.
(x+3)(12x-12)-x12ddx[x+3](x+3)2
(x+3)(12x-12)-x12ddx[x+3](x+3)2
Step 1.8
Combine fractions.
Step 1.8.1
Move the negative in front of the fraction.
(x+3)(12x-12)-x12ddx[x+3](x+3)2
Step 1.8.2
Combine 12 and x-12.
(x+3)x-122-x12ddx[x+3](x+3)2
Step 1.8.3
Move x-12 to the denominator using the negative exponent rule b-n=1bn.
(x+3)12x12-x12ddx[x+3](x+3)2
(x+3)12x12-x12ddx[x+3](x+3)2
Step 1.9
By the Sum Rule, the derivative of x+3 with respect to x is ddx[x]+ddx[3].
(x+3)12x12-x12(ddx[x]+ddx[3])(x+3)2
Step 1.10
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=1.
(x+3)12x12-x12(1+ddx[3])(x+3)2
Step 1.11
Since 3 is constant with respect to x, the derivative of 3 with respect to x is 0.
(x+3)12x12-x12(1+0)(x+3)2
Step 1.12
Simplify the expression.
Step 1.12.1
Add 1 and 0.
(x+3)12x12-x12⋅1(x+3)2
Step 1.12.2
Multiply -1 by 1.
(x+3)12x12-x12(x+3)2
(x+3)12x12-x12(x+3)2
Step 1.13
Simplify.
Step 1.13.1
Apply the distributive property.
x12x12+312x12-x12(x+3)2
Step 1.13.2
Simplify the numerator.
Step 1.13.2.1
Simplify each term.
Step 1.13.2.1.1
Combine x and 12x12.
x2x12+312x12-x12(x+3)2
Step 1.13.2.1.2
Move x12 to the numerator using the negative exponent rule 1bn=b-n.
x⋅x-122+312x12-x12(x+3)2
Step 1.13.2.1.3
Multiply x by x-12 by adding the exponents.
Step 1.13.2.1.3.1
Multiply x by x-12.
Step 1.13.2.1.3.1.1
Raise x to the power of 1.
x1x-122+312x12-x12(x+3)2
Step 1.13.2.1.3.1.2
Use the power rule aman=am+n to combine exponents.
x1-122+312x12-x12(x+3)2
x1-122+312x12-x12(x+3)2
Step 1.13.2.1.3.2
Write 1 as a fraction with a common denominator.
x22-122+312x12-x12(x+3)2
Step 1.13.2.1.3.3
Combine the numerators over the common denominator.
x2-122+312x12-x12(x+3)2
Step 1.13.2.1.3.4
Subtract 1 from 2.
x122+312x12-x12(x+3)2
x122+312x12-x12(x+3)2
Step 1.13.2.1.4
Combine 3 and 12x12.
x122+32x12-x12(x+3)2
x122+32x12-x12(x+3)2
Step 1.13.2.2
To write -x12 as a fraction with a common denominator, multiply by 22.
x122-x12⋅22+32x12(x+3)2
Step 1.13.2.3
Combine -x12 and 22.
x122+-x12⋅22+32x12(x+3)2
Step 1.13.2.4
Combine the numerators over the common denominator.
x12-x12⋅22+32x12(x+3)2
Step 1.13.2.5
Simplify each term.
Step 1.13.2.5.1
Simplify the numerator.
Step 1.13.2.5.1.1
Factor x12 out of x12-x12⋅2.
Step 1.13.2.5.1.1.1
Move x12.
x12-1⋅2x122+32x12(x+3)2
Step 1.13.2.5.1.1.2
Multiply by 1.
x12⋅1-1⋅2x122+32x12(x+3)2
Step 1.13.2.5.1.1.3
Factor x12 out of -1⋅2x12.
x12⋅1+x12(-1⋅2)2+32x12(x+3)2
Step 1.13.2.5.1.1.4
Factor x12 out of x12⋅1+x12(-1⋅2).
x12(1-1⋅2)2+32x12(x+3)2
x12(1-1⋅2)2+32x12(x+3)2
Step 1.13.2.5.1.2
Multiply -1 by 2.
x12(1-2)2+32x12(x+3)2
Step 1.13.2.5.1.3
Subtract 2 from 1.
x12⋅-12+32x12(x+3)2
x12⋅-12+32x12(x+3)2
Step 1.13.2.5.2
Move -1 to the left of x12.
-1⋅x122+32x12(x+3)2
Step 1.13.2.5.3
Move the negative in front of the fraction.
-x122+32x12(x+3)2
-x122+32x12(x+3)2
-x122+32x12(x+3)2
Step 1.13.3
Combine terms.
Step 1.13.3.1
Multiply -x122+32x12(x+3)2 by 2x122x12.
2x122x12⋅-x122+32x12(x+3)2
Step 1.13.3.2
Combine.
2x12(-x122+32x12)2x12(x+3)2
Step 1.13.3.3
Apply the distributive property.
2x12(-x122)+2x1232x122x12(x+3)2
Step 1.13.3.4
Cancel the common factor of 2x12.
Step 1.13.3.4.1
Cancel the common factor.
2x12(-x122)+2x1232x122x12(x+3)2
Step 1.13.3.4.2
Rewrite the expression.
2x12(-x122)+32x12(x+3)2
2x12(-x122)+32x12(x+3)2
Step 1.13.3.5
Multiply -1 by 2.
-2x12x122+32x12(x+3)2
Step 1.13.3.6
Combine -2 and x122.
x12-2x122+32x12(x+3)2
Step 1.13.3.7
Combine x12 and -2x122.
x12(-2x12)2+32x12(x+3)2
Step 1.13.3.8
Multiply x12 by x12 by adding the exponents.
Step 1.13.3.8.1
Move x12.
x12x12⋅-22+32x12(x+3)2
Step 1.13.3.8.2
Use the power rule aman=am+n to combine exponents.
x12+12⋅-22+32x12(x+3)2
Step 1.13.3.8.3
Combine the numerators over the common denominator.
x1+12⋅-22+32x12(x+3)2
Step 1.13.3.8.4
Add 1 and 1.
x22⋅-22+32x12(x+3)2
Step 1.13.3.8.5
Divide 2 by 2.
x1⋅-22+32x12(x+3)2
x1⋅-22+32x12(x+3)2
Step 1.13.3.9
Simplify x1⋅-2.
x⋅-22+32x12(x+3)2
Step 1.13.3.10
Move -2 to the left of x.
-2⋅x2+32x12(x+3)2
Step 1.13.3.11
Cancel the common factor of -2 and 2.
Step 1.13.3.11.1
Factor 2 out of -2x.
2(-x)2+32x12(x+3)2
Step 1.13.3.11.2
Cancel the common factors.
Step 1.13.3.11.2.1
Factor 2 out of 2.
2(-x)2(1)+32x12(x+3)2
Step 1.13.3.11.2.2
Cancel the common factor.
2(-x)2⋅1+32x12(x+3)2
Step 1.13.3.11.2.3
Rewrite the expression.
-x1+32x12(x+3)2
Step 1.13.3.11.2.4
Divide -x by 1.
-x+32x12(x+3)2
-x+32x12(x+3)2
-x+32x12(x+3)2
-x+32x12(x+3)2
Step 1.13.4
Factor -1 out of -x.
-(x)+32x12(x+3)2
Step 1.13.5
Rewrite 3 as -1(-3).
-(x)-1(-3)2x12(x+3)2
Step 1.13.6
Factor -1 out of -(x)-1(-3).
-(x-3)2x12(x+3)2
Step 1.13.7
Rewrite -(x-3) as -1(x-3).
-1(x-3)2x12(x+3)2
Step 1.13.8
Move the negative in front of the fraction.
-x-32x12(x+3)2
-x-32x12(x+3)2
Step 1.14
Evaluate the derivative at x=1.
-(1)-32(1)12((1)+3)2
Step 1.15
Simplify.
Step 1.15.1
Subtract 3 from 1.
--22⋅112(1+3)2
Step 1.15.2
Simplify the denominator.
Step 1.15.2.1
Add 1 and 3.
--22⋅112⋅42
Step 1.15.2.2
Combine exponents.
Step 1.15.2.2.1
Rewrite 4 as 22.
--2(22)2⋅2⋅112
Step 1.15.2.2.2
Multiply the exponents in (22)2.
Step 1.15.2.2.2.1
Apply the power rule and multiply exponents, (am)n=amn.
--222⋅2⋅2⋅112
Step 1.15.2.2.2.2
Multiply 2 by 2.
--224⋅2⋅112
--224⋅2⋅112
Step 1.15.2.2.3
Use the power rule aman=am+n to combine exponents.
--224+1⋅112
Step 1.15.2.2.4
Add 4 and 1.
--225⋅112
--225⋅112
Step 1.15.2.3
Raise 2 to the power of 5.
--232⋅112
Step 1.15.2.4
One to any power is one.
--232⋅1
--232⋅1
Step 1.15.3
Reduce the expression by cancelling the common factors.
Step 1.15.3.1
Multiply 32 by 1.
--232
Step 1.15.3.2
Cancel the common factor of -2 and 32.
Step 1.15.3.2.1
Factor 2 out of -2.
-2(-1)32
Step 1.15.3.2.2
Cancel the common factors.
Step 1.15.3.2.2.1
Factor 2 out of 32.
-2⋅-12⋅16
Step 1.15.3.2.2.2
Cancel the common factor.
-2⋅-12⋅16
Step 1.15.3.2.2.3
Rewrite the expression.
--116
--116
--116
Step 1.15.3.3
Move the negative in front of the fraction.
--116
--116
Step 1.15.4
Multiply --116.
Step 1.15.4.1
Multiply -1 by -1.
1(116)
Step 1.15.4.2
Multiply 116 by 1.
116
116
116
116
Step 2
Step 2.1
Use the slope 116 and a given point (1,0.25) to substitute for x1 and y1 in the point-slope form y-y1=m(x-x1), which is derived from the slope equation m=y2-y1x2-x1.
y-(0.25)=116⋅(x-(1))
Step 2.2
Simplify the equation and keep it in point-slope form.
y-0.25=116⋅(x-1)
Step 2.3
Solve for y.
Step 2.3.1
Simplify 116⋅(x-1).
Step 2.3.1.1
Rewrite.
y-0.25=0+0+116⋅(x-1)
Step 2.3.1.2
Simplify by adding zeros.
y-0.25=116⋅(x-1)
Step 2.3.1.3
Apply the distributive property.
y-0.25=116x+116⋅-1
Step 2.3.1.4
Combine 116 and x.
y-0.25=x16+116⋅-1
Step 2.3.1.5
Combine 116 and -1.
y-0.25=x16+-116
Step 2.3.1.6
Move the negative in front of the fraction.
y-0.25=x16-116
y-0.25=x16-116
Step 2.3.2
Move all terms not containing y to the right side of the equation.
Step 2.3.2.1
Add 0.25 to both sides of the equation.
y=x16-116+0.25
Step 2.3.2.2
To write 0.25 as a fraction with a common denominator, multiply by 1616.
y=x16-116+0.25⋅1616
Step 2.3.2.3
Combine 0.25 and 1616.
y=x16-116+0.25⋅1616
Step 2.3.2.4
Combine the numerators over the common denominator.
y=x16+-1+0.25⋅1616
Step 2.3.2.5
Simplify the numerator.
Step 2.3.2.5.1
Multiply 0.25 by 16.
y=x16+-1+416
Step 2.3.2.5.2
Add -1 and 4.
y=x16+316
y=x16+316
Step 2.3.2.6
Cancel the common factor of 3 and 16.
Step 2.3.2.6.1
Rewrite 3 as 1(3).
y=x16+1(3)16
Step 2.3.2.6.2
Cancel the common factors.
Step 2.3.2.6.2.1
Rewrite 16 as 1(16).
y=x16+1⋅31⋅16
Step 2.3.2.6.2.2
Cancel the common factor.
y=x16+1⋅31⋅16
Step 2.3.2.6.2.3
Rewrite the expression.
y=x16+316
y=x16+316
y=x16+316
y=x16+316
Step 2.3.3
Reorder terms.
y=116x+316
y=116x+316
y=116x+316
Step 3