Enter a problem...
Calculus Examples
y=xcos(x)y=xcos(x) ; x=1x=1
Step 1
Step 1.1
Substitute 11 in for xx.
y=(1)cos(1)y=(1)cos(1)
Step 1.2
Solve for yy.
Step 1.2.1
Remove parentheses.
y=1cos(1)y=1cos(1)
Step 1.2.2
Remove parentheses.
y=(1)cos(1)y=(1)cos(1)
Step 1.2.3
Simplify (1)cos(1)(1)cos(1).
Step 1.2.3.1
Evaluate cos(1)cos(1).
y=10.99984769y=10.99984769
Step 1.2.3.2
One to any power is one.
y=1y=1
y=1y=1
y=1y=1
y=1y=1
Step 2
Step 2.1
Use the properties of logarithms to simplify the differentiation.
Step 2.1.1
Rewrite xcos(x)xcos(x) as eln(xcos(x))eln(xcos(x)).
ddx[eln(xcos(x))]ddx[eln(xcos(x))]
Step 2.1.2
Expand ln(xcos(x))ln(xcos(x)) by moving cos(x)cos(x) outside the logarithm.
ddx[ecos(x)ln(x)]ddx[ecos(x)ln(x)]
ddx[ecos(x)ln(x)]ddx[ecos(x)ln(x)]
Step 2.2
Differentiate using the chain rule, which states that ddx[f(g(x))]ddx[f(g(x))] is f′(g(x))g′(x) where f(x)=ex and g(x)=cos(x)ln(x).
Step 2.2.1
To apply the Chain Rule, set u as cos(x)ln(x).
ddu[eu]ddx[cos(x)ln(x)]
Step 2.2.2
Differentiate using the Exponential Rule which states that ddu[au] is auln(a) where a=e.
euddx[cos(x)ln(x)]
Step 2.2.3
Replace all occurrences of u with cos(x)ln(x).
ecos(x)ln(x)ddx[cos(x)ln(x)]
ecos(x)ln(x)ddx[cos(x)ln(x)]
Step 2.3
Differentiate using the Product Rule which states that ddx[f(x)g(x)] is f(x)ddx[g(x)]+g(x)ddx[f(x)] where f(x)=cos(x) and g(x)=ln(x).
ecos(x)ln(x)(cos(x)ddx[ln(x)]+ln(x)ddx[cos(x)])
Step 2.4
The derivative of ln(x) with respect to x is 1x.
ecos(x)ln(x)(cos(x)1x+ln(x)ddx[cos(x)])
Step 2.5
Combine cos(x) and 1x.
ecos(x)ln(x)(cos(x)x+ln(x)ddx[cos(x)])
Step 2.6
The derivative of cos(x) with respect to x is -sin(x).
ecos(x)ln(x)(cos(x)x+ln(x)(-sin(x)))
Step 2.7
Simplify.
Step 2.7.1
Apply the distributive property.
ecos(x)ln(x)cos(x)x+ecos(x)ln(x)(ln(x)(-sin(x)))
Step 2.7.2
Combine ecos(x)ln(x) and cos(x)x.
ecos(x)ln(x)cos(x)x+ecos(x)ln(x)ln(x)(-sin(x))
Step 2.7.3
Reorder terms.
-ecos(x)ln(x)sin(x)ln(x)+ecos(x)ln(x)cos(x)x
-ecos(x)ln(x)sin(x)ln(x)+ecos(x)ln(x)cos(x)x
Step 2.8
Evaluate the derivative at x=1.
-ecos(1)ln(1)sin(1)ln(1)+ecos(1)ln(1)cos(1)1
Step 2.9
Simplify.
Step 2.9.1
Simplify each term.
Step 2.9.1.1
Evaluate cos(1).
-e0.99984769ln(1)sin(1)ln(1)+ecos(1)ln(1)cos(1)1
Step 2.9.1.2
Simplify 0.99984769ln(1) by moving 0.99984769 inside the logarithm.
-eln(10.99984769)sin(1)ln(1)+ecos(1)ln(1)cos(1)1
Step 2.9.1.3
Exponentiation and log are inverse functions.
-10.99984769sin(1)ln(1)+ecos(1)ln(1)cos(1)1
Step 2.9.1.4
One to any power is one.
-1⋅1sin(1)ln(1)+ecos(1)ln(1)cos(1)1
Step 2.9.1.5
Multiply -1 by 1.
-1sin(1)ln(1)+ecos(1)ln(1)cos(1)1
Step 2.9.1.6
Evaluate sin(1).
-1⋅0.0174524ln(1)+ecos(1)ln(1)cos(1)1
Step 2.9.1.7
Multiply -1 by 0.0174524.
-0.0174524ln(1)+ecos(1)ln(1)cos(1)1
Step 2.9.1.8
The natural logarithm of 1 is 0.
-0.0174524⋅0+ecos(1)ln(1)cos(1)1
Step 2.9.1.9
Multiply -0.0174524 by 0.
0+ecos(1)ln(1)cos(1)1
Step 2.9.1.10
Divide ecos(1)ln(1)cos(1) by 1.
0+ecos(1)ln(1)cos(1)
Step 2.9.1.11
Evaluate cos(1).
0+e0.99984769ln(1)cos(1)
Step 2.9.1.12
Simplify 0.99984769ln(1) by moving 0.99984769 inside the logarithm.
0+eln(10.99984769)cos(1)
Step 2.9.1.13
Exponentiation and log are inverse functions.
0+10.99984769cos(1)
Step 2.9.1.14
One to any power is one.
0+1cos(1)
Step 2.9.1.15
Multiply cos(1) by 1.
0+cos(1)
Step 2.9.1.16
Evaluate cos(1).
0+0.99984769
0+0.99984769
Step 2.9.2
Add 0 and 0.99984769.
0.99984769
0.99984769
0.99984769
Step 3
Step 3.1
Use the slope 0.99984769 and a given point (1,1) to substitute for x1 and y1 in the point-slope form y-y1=m(x-x1), which is derived from the slope equation m=y2-y1x2-x1.
y-(1)=0.99984769⋅(x-(1))
Step 3.2
Simplify the equation and keep it in point-slope form.
y-1=0.99984769⋅(x-1)
Step 3.3
Solve for y.
Step 3.3.1
Simplify 0.99984769⋅(x-1).
Step 3.3.1.1
Rewrite.
y-1=0+0+0.99984769⋅(x-1)
Step 3.3.1.2
Simplify by adding zeros.
y-1=0.99984769⋅(x-1)
Step 3.3.1.3
Apply the distributive property.
y-1=0.99984769x+0.99984769⋅-1
Step 3.3.1.4
Multiply 0.99984769 by -1.
y-1=0.99984769x-0.99984769
y-1=0.99984769x-0.99984769
Step 3.3.2
Move all terms not containing y to the right side of the equation.
Step 3.3.2.1
Add 1 to both sides of the equation.
y=0.99984769x-0.99984769+1
Step 3.3.2.2
Add -0.99984769 and 1.
y=0.99984769x+0.0001523
y=0.99984769x+0.0001523
y=0.99984769x+0.0001523
y=0.99984769x+0.0001523
Step 4