Calculus Examples

Find the Tangent Line at x=1 y=x^(cos(x)) ; x=1
y=xcos(x)y=xcos(x) ; x=1x=1
Step 1
Find the corresponding yy-value to x=1x=1.
Tap for more steps...
Step 1.1
Substitute 11 in for xx.
y=(1)cos(1)y=(1)cos(1)
Step 1.2
Solve for yy.
Tap for more steps...
Step 1.2.1
Remove parentheses.
y=1cos(1)y=1cos(1)
Step 1.2.2
Remove parentheses.
y=(1)cos(1)y=(1)cos(1)
Step 1.2.3
Simplify (1)cos(1)(1)cos(1).
Tap for more steps...
Step 1.2.3.1
Evaluate cos(1)cos(1).
y=10.99984769y=10.99984769
Step 1.2.3.2
One to any power is one.
y=1y=1
y=1y=1
y=1y=1
y=1y=1
Step 2
Find the first derivative and evaluate at x=1x=1 and y=1y=1 to find the slope of the tangent line.
Tap for more steps...
Step 2.1
Use the properties of logarithms to simplify the differentiation.
Tap for more steps...
Step 2.1.1
Rewrite xcos(x)xcos(x) as eln(xcos(x))eln(xcos(x)).
ddx[eln(xcos(x))]ddx[eln(xcos(x))]
Step 2.1.2
Expand ln(xcos(x))ln(xcos(x)) by moving cos(x)cos(x) outside the logarithm.
ddx[ecos(x)ln(x)]ddx[ecos(x)ln(x)]
ddx[ecos(x)ln(x)]ddx[ecos(x)ln(x)]
Step 2.2
Differentiate using the chain rule, which states that ddx[f(g(x))]ddx[f(g(x))] is f(g(x))g(x) where f(x)=ex and g(x)=cos(x)ln(x).
Tap for more steps...
Step 2.2.1
To apply the Chain Rule, set u as cos(x)ln(x).
ddu[eu]ddx[cos(x)ln(x)]
Step 2.2.2
Differentiate using the Exponential Rule which states that ddu[au] is auln(a) where a=e.
euddx[cos(x)ln(x)]
Step 2.2.3
Replace all occurrences of u with cos(x)ln(x).
ecos(x)ln(x)ddx[cos(x)ln(x)]
ecos(x)ln(x)ddx[cos(x)ln(x)]
Step 2.3
Differentiate using the Product Rule which states that ddx[f(x)g(x)] is f(x)ddx[g(x)]+g(x)ddx[f(x)] where f(x)=cos(x) and g(x)=ln(x).
ecos(x)ln(x)(cos(x)ddx[ln(x)]+ln(x)ddx[cos(x)])
Step 2.4
The derivative of ln(x) with respect to x is 1x.
ecos(x)ln(x)(cos(x)1x+ln(x)ddx[cos(x)])
Step 2.5
Combine cos(x) and 1x.
ecos(x)ln(x)(cos(x)x+ln(x)ddx[cos(x)])
Step 2.6
The derivative of cos(x) with respect to x is -sin(x).
ecos(x)ln(x)(cos(x)x+ln(x)(-sin(x)))
Step 2.7
Simplify.
Tap for more steps...
Step 2.7.1
Apply the distributive property.
ecos(x)ln(x)cos(x)x+ecos(x)ln(x)(ln(x)(-sin(x)))
Step 2.7.2
Combine ecos(x)ln(x) and cos(x)x.
ecos(x)ln(x)cos(x)x+ecos(x)ln(x)ln(x)(-sin(x))
Step 2.7.3
Reorder terms.
-ecos(x)ln(x)sin(x)ln(x)+ecos(x)ln(x)cos(x)x
-ecos(x)ln(x)sin(x)ln(x)+ecos(x)ln(x)cos(x)x
Step 2.8
Evaluate the derivative at x=1.
-ecos(1)ln(1)sin(1)ln(1)+ecos(1)ln(1)cos(1)1
Step 2.9
Simplify.
Tap for more steps...
Step 2.9.1
Simplify each term.
Tap for more steps...
Step 2.9.1.1
Evaluate cos(1).
-e0.99984769ln(1)sin(1)ln(1)+ecos(1)ln(1)cos(1)1
Step 2.9.1.2
Simplify 0.99984769ln(1) by moving 0.99984769 inside the logarithm.
-eln(10.99984769)sin(1)ln(1)+ecos(1)ln(1)cos(1)1
Step 2.9.1.3
Exponentiation and log are inverse functions.
-10.99984769sin(1)ln(1)+ecos(1)ln(1)cos(1)1
Step 2.9.1.4
One to any power is one.
-11sin(1)ln(1)+ecos(1)ln(1)cos(1)1
Step 2.9.1.5
Multiply -1 by 1.
-1sin(1)ln(1)+ecos(1)ln(1)cos(1)1
Step 2.9.1.6
Evaluate sin(1).
-10.0174524ln(1)+ecos(1)ln(1)cos(1)1
Step 2.9.1.7
Multiply -1 by 0.0174524.
-0.0174524ln(1)+ecos(1)ln(1)cos(1)1
Step 2.9.1.8
The natural logarithm of 1 is 0.
-0.01745240+ecos(1)ln(1)cos(1)1
Step 2.9.1.9
Multiply -0.0174524 by 0.
0+ecos(1)ln(1)cos(1)1
Step 2.9.1.10
Divide ecos(1)ln(1)cos(1) by 1.
0+ecos(1)ln(1)cos(1)
Step 2.9.1.11
Evaluate cos(1).
0+e0.99984769ln(1)cos(1)
Step 2.9.1.12
Simplify 0.99984769ln(1) by moving 0.99984769 inside the logarithm.
0+eln(10.99984769)cos(1)
Step 2.9.1.13
Exponentiation and log are inverse functions.
0+10.99984769cos(1)
Step 2.9.1.14
One to any power is one.
0+1cos(1)
Step 2.9.1.15
Multiply cos(1) by 1.
0+cos(1)
Step 2.9.1.16
Evaluate cos(1).
0+0.99984769
0+0.99984769
Step 2.9.2
Add 0 and 0.99984769.
0.99984769
0.99984769
0.99984769
Step 3
Plug the slope and point values into the point-slope formula and solve for y.
Tap for more steps...
Step 3.1
Use the slope 0.99984769 and a given point (1,1) to substitute for x1 and y1 in the point-slope form y-y1=m(x-x1), which is derived from the slope equation m=y2-y1x2-x1.
y-(1)=0.99984769(x-(1))
Step 3.2
Simplify the equation and keep it in point-slope form.
y-1=0.99984769(x-1)
Step 3.3
Solve for y.
Tap for more steps...
Step 3.3.1
Simplify 0.99984769(x-1).
Tap for more steps...
Step 3.3.1.1
Rewrite.
y-1=0+0+0.99984769(x-1)
Step 3.3.1.2
Simplify by adding zeros.
y-1=0.99984769(x-1)
Step 3.3.1.3
Apply the distributive property.
y-1=0.99984769x+0.99984769-1
Step 3.3.1.4
Multiply 0.99984769 by -1.
y-1=0.99984769x-0.99984769
y-1=0.99984769x-0.99984769
Step 3.3.2
Move all terms not containing y to the right side of the equation.
Tap for more steps...
Step 3.3.2.1
Add 1 to both sides of the equation.
y=0.99984769x-0.99984769+1
Step 3.3.2.2
Add -0.99984769 and 1.
y=0.99984769x+0.0001523
y=0.99984769x+0.0001523
y=0.99984769x+0.0001523
y=0.99984769x+0.0001523
Step 4
 [x2  12  π  xdx ]