Enter a problem...
Calculus Examples
y=6excos(x)y=6excos(x) , (0,6)(0,6)
Step 1
Step 1.1
Since 66 is constant with respect to xx, the derivative of 6excos(x)6excos(x) with respect to xx is 6ddx[excos(x)]6ddx[excos(x)].
6ddx[excos(x)]6ddx[excos(x)]
Step 1.2
Differentiate using the Product Rule which states that ddx[f(x)g(x)]ddx[f(x)g(x)] is f(x)ddx[g(x)]+g(x)ddx[f(x)]f(x)ddx[g(x)]+g(x)ddx[f(x)] where f(x)=exf(x)=ex and g(x)=cos(x)g(x)=cos(x).
6(exddx[cos(x)]+cos(x)ddx[ex])6(exddx[cos(x)]+cos(x)ddx[ex])
Step 1.3
The derivative of cos(x)cos(x) with respect to xx is -sin(x)−sin(x).
6(ex(-sin(x))+cos(x)ddx[ex])6(ex(−sin(x))+cos(x)ddx[ex])
Step 1.4
Differentiate using the Exponential Rule which states that ddx[ax]ddx[ax] is axln(a)axln(a) where aa=ee.
6(ex(-sin(x))+cos(x)ex)6(ex(−sin(x))+cos(x)ex)
Step 1.5
Simplify.
Step 1.5.1
Apply the distributive property.
6(ex(-sin(x)))+6(cos(x)ex)6(ex(−sin(x)))+6(cos(x)ex)
Step 1.5.2
Multiply -1−1 by 66.
-6exsin(x)+6cos(x)ex−6exsin(x)+6cos(x)ex
Step 1.5.3
Reorder terms.
-6exsin(x)+6excos(x)−6exsin(x)+6excos(x)
-6exsin(x)+6excos(x)−6exsin(x)+6excos(x)
Step 1.6
Evaluate the derivative at x=0x=0.
-6e0sin(0)+6e0cos(0)−6e0sin(0)+6e0cos(0)
Step 1.7
Simplify.
Step 1.7.1
Simplify each term.
Step 1.7.1.1
Anything raised to 00 is 11.
-6⋅1sin(0)+6e0cos(0)−6⋅1sin(0)+6e0cos(0)
Step 1.7.1.2
Multiply -6 by 1.
-6sin(0)+6e0cos(0)
Step 1.7.1.3
The exact value of sin(0) is 0.
-6⋅0+6e0cos(0)
Step 1.7.1.4
Multiply -6 by 0.
0+6e0cos(0)
Step 1.7.1.5
Anything raised to 0 is 1.
0+6⋅1cos(0)
Step 1.7.1.6
Multiply 6 by 1.
0+6cos(0)
Step 1.7.1.7
The exact value of cos(0) is 1.
0+6⋅1
Step 1.7.1.8
Multiply 6 by 1.
0+6
0+6
Step 1.7.2
Add 0 and 6.
6
6
6
Step 2
Step 2.1
Use the slope 6 and a given point (0,6) to substitute for x1 and y1 in the point-slope form y-y1=m(x-x1), which is derived from the slope equation m=y2-y1x2-x1.
y-(6)=6⋅(x-(0))
Step 2.2
Simplify the equation and keep it in point-slope form.
y-6=6⋅(x+0)
Step 2.3
Solve for y.
Step 2.3.1
Add x and 0.
y-6=6x
Step 2.3.2
Add 6 to both sides of the equation.
y=6x+6
y=6x+6
y=6x+6
Step 3