Enter a problem...
Calculus Examples
y=8xx2+1y=8xx2+1 at the origin and at the point (1,4)(1,4)
Step 1
Step 1.1
Since 88 is constant with respect to xx, the derivative of 8xx2+18xx2+1 with respect to xx is 8ddx[xx2+1]8ddx[xx2+1].
8ddx[xx2+1]8ddx[xx2+1]
Step 1.2
Differentiate using the Quotient Rule which states that ddx[f(x)g(x)]ddx[f(x)g(x)] is g(x)ddx[f(x)]-f(x)ddx[g(x)]g(x)2g(x)ddx[f(x)]−f(x)ddx[g(x)]g(x)2 where f(x)=xf(x)=x and g(x)=x2+1g(x)=x2+1.
8(x2+1)ddx[x]-xddx[x2+1](x2+1)28(x2+1)ddx[x]−xddx[x2+1](x2+1)2
Step 1.3
Differentiate.
Step 1.3.1
Differentiate using the Power Rule which states that ddx[xn]ddx[xn] is nxn-1nxn−1 where n=1n=1.
8(x2+1)⋅1-xddx[x2+1](x2+1)28(x2+1)⋅1−xddx[x2+1](x2+1)2
Step 1.3.2
Multiply x2+1x2+1 by 11.
8x2+1-xddx[x2+1](x2+1)28x2+1−xddx[x2+1](x2+1)2
Step 1.3.3
By the Sum Rule, the derivative of x2+1x2+1 with respect to xx is ddx[x2]+ddx[1]ddx[x2]+ddx[1].
8x2+1-x(ddx[x2]+ddx[1])(x2+1)28x2+1−x(ddx[x2]+ddx[1])(x2+1)2
Step 1.3.4
Differentiate using the Power Rule which states that ddx[xn]ddx[xn] is nxn-1nxn−1 where n=2n=2.
8x2+1-x(2x+ddx[1])(x2+1)28x2+1−x(2x+ddx[1])(x2+1)2
Step 1.3.5
Since 11 is constant with respect to xx, the derivative of 11 with respect to xx is 00.
8x2+1-x(2x+0)(x2+1)28x2+1−x(2x+0)(x2+1)2
Step 1.3.6
Simplify the expression.
Step 1.3.6.1
Add 2x2x and 00.
8x2+1-x(2x)(x2+1)28x2+1−x(2x)(x2+1)2
Step 1.3.6.2
Multiply 22 by -1−1.
8x2+1-2x⋅x(x2+1)28x2+1−2x⋅x(x2+1)2
8x2+1-2x⋅x(x2+1)28x2+1−2x⋅x(x2+1)2
8x2+1-2x⋅x(x2+1)28x2+1−2x⋅x(x2+1)2
Step 1.4
Raise xx to the power of 11.
8x2+1-2(x1x)(x2+1)28x2+1−2(x1x)(x2+1)2
Step 1.5
Raise xx to the power of 11.
8x2+1-2(x1x1)(x2+1)28x2+1−2(x1x1)(x2+1)2
Step 1.6
Use the power rule aman=am+naman=am+n to combine exponents.
8x2+1-2x1+1(x2+1)28x2+1−2x1+1(x2+1)2
Step 1.7
Add 11 and 11.
8x2+1-2x2(x2+1)28x2+1−2x2(x2+1)2
Step 1.8
Subtract 2x22x2 from x2x2.
8-x2+1(x2+1)28−x2+1(x2+1)2
Step 1.9
Combine 88 and -x2+1(x2+1)2−x2+1(x2+1)2.
8(-x2+1)(x2+1)28(−x2+1)(x2+1)2
Step 1.10
Simplify.
Step 1.10.1
Apply the distributive property.
8(-x2)+8⋅1(x2+1)28(−x2)+8⋅1(x2+1)2
Step 1.10.2
Simplify each term.
Step 1.10.2.1
Multiply -1−1 by 88.
-8x2+8⋅1(x2+1)2−8x2+8⋅1(x2+1)2
Step 1.10.2.2
Multiply 88 by 11.
-8x2+8(x2+1)2−8x2+8(x2+1)2
-8x2+8(x2+1)2−8x2+8(x2+1)2
-8x2+8(x2+1)2−8x2+8(x2+1)2
Step 1.11
Evaluate the derivative at x=1x=1.
-8(1)2+8((1)2+1)2−8(1)2+8((1)2+1)2
Step 1.12
Simplify.
Step 1.12.1
Simplify the numerator.
Step 1.12.1.1
One to any power is one.
-8⋅1+8(12+1)2−8⋅1+8(12+1)2
Step 1.12.1.2
Multiply -8−8 by 11.
-8+8(12+1)2−8+8(12+1)2
Step 1.12.1.3
Add -8−8 and 88.
0(12+1)20(12+1)2
0(12+1)20(12+1)2
Step 1.12.2
Simplify the denominator.
Step 1.12.2.1
One to any power is one.
0(1+1)20(1+1)2
Step 1.12.2.2
Add 11 and 11.
022022
Step 1.12.2.3
Raise 22 to the power of 22.
0404
0404
Step 1.12.3
Divide 00 by 44.
00
00
00
Step 2
Step 2.1
Use the slope 00 and a given point (1,4)(1,4) to substitute for x1x1 and y1y1 in the point-slope form y-y1=m(x-x1)y−y1=m(x−x1), which is derived from the slope equation m=y2-y1x2-x1m=y2−y1x2−x1.
y-(4)=0⋅(x-(1))y−(4)=0⋅(x−(1))
Step 2.2
Simplify the equation and keep it in point-slope form.
y-4=0⋅(x-1)y−4=0⋅(x−1)
Step 2.3
Solve for yy.
Step 2.3.1
Multiply 00 by x-1x−1.
y-4=0y−4=0
Step 2.3.2
Add 44 to both sides of the equation.
y=4y=4
y=4y=4
y=4y=4
Step 3