Enter a problem...
Calculus Examples
y=-1x3y=−1x3 , (-1,1)(−1,1)
Step 1
Step 1.1
Differentiate using the Product Rule which states that ddx[f(x)g(x)]ddx[f(x)g(x)] is f(x)ddx[g(x)]+g(x)ddx[f(x)]f(x)ddx[g(x)]+g(x)ddx[f(x)] where f(x)=-1f(x)=−1 and g(x)=1x3g(x)=1x3.
-ddx[1x3]+1x3ddx[-1]−ddx[1x3]+1x3ddx[−1]
Step 1.2
Differentiate.
Step 1.2.1
Rewrite 1x31x3 as (x3)-1(x3)−1.
-ddx[(x3)-1]+1x3ddx[-1]−ddx[(x3)−1]+1x3ddx[−1]
Step 1.2.2
Multiply the exponents in (x3)-1(x3)−1.
Step 1.2.2.1
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
-ddx[x3⋅-1]+1x3ddx[-1]−ddx[x3⋅−1]+1x3ddx[−1]
Step 1.2.2.2
Multiply 33 by -1−1.
-ddx[x-3]+1x3ddx[-1]−ddx[x−3]+1x3ddx[−1]
-ddx[x-3]+1x3ddx[-1]−ddx[x−3]+1x3ddx[−1]
Step 1.2.3
Differentiate using the Power Rule which states that ddx[xn]ddx[xn] is nxn-1nxn−1 where n=-3n=−3.
-(-3x-4)+1x3ddx[-1]−(−3x−4)+1x3ddx[−1]
Step 1.2.4
Multiply -3−3 by -1−1.
3x-4+1x3ddx[-1]3x−4+1x3ddx[−1]
Step 1.2.5
Since -1−1 is constant with respect to xx, the derivative of -1−1 with respect to xx is 00.
3x-4+1x3⋅03x−4+1x3⋅0
Step 1.2.6
Simplify the expression.
Step 1.2.6.1
Multiply 1x31x3 by 00.
3x-4+03x−4+0
Step 1.2.6.2
Add 3x-43x−4 and 00.
3x-43x−4
3x-43x−4
3x-43x−4
Step 1.3
Simplify.
Step 1.3.1
Rewrite the expression using the negative exponent rule b-n=1bnb−n=1bn.
31x431x4
Step 1.3.2
Combine 33 and 1x41x4.
3x43x4
3x43x4
Step 1.4
Evaluate the derivative at x=-1x=−1.
3(-1)43(−1)4
Step 1.5
Simplify.
Step 1.5.1
Raise -1−1 to the power of 44.
3131
Step 1.5.2
Divide 33 by 11.
33
33
33
Step 2
Step 2.1
Use the slope 33 and a given point (-1,1)(−1,1) to substitute for x1x1 and y1y1 in the point-slope form y-y1=m(x-x1)y−y1=m(x−x1), which is derived from the slope equation m=y2-y1x2-x1m=y2−y1x2−x1.
y-(1)=3⋅(x-(-1))y−(1)=3⋅(x−(−1))
Step 2.2
Simplify the equation and keep it in point-slope form.
y-1=3⋅(x+1)y−1=3⋅(x+1)
Step 2.3
Solve for yy.
Step 2.3.1
Simplify 3⋅(x+1)3⋅(x+1).
Step 2.3.1.1
Rewrite.
y-1=0+0+3⋅(x+1)y−1=0+0+3⋅(x+1)
Step 2.3.1.2
Simplify by adding zeros.
y-1=3⋅(x+1)y−1=3⋅(x+1)
Step 2.3.1.3
Apply the distributive property.
y-1=3x+3⋅1y−1=3x+3⋅1
Step 2.3.1.4
Multiply 33 by 11.
y-1=3x+3y−1=3x+3
y-1=3x+3y−1=3x+3
Step 2.3.2
Move all terms not containing yy to the right side of the equation.
Step 2.3.2.1
Add 11 to both sides of the equation.
y=3x+3+1y=3x+3+1
Step 2.3.2.2
Add 33 and 11.
y=3x+4y=3x+4
y=3x+4y=3x+4
y=3x+4y=3x+4
y=3x+4y=3x+4
Step 3