Calculus Examples

Find the Tangent Line at (11,11) x^3+y^3=22xy ; (11,11)
x3+y3=22xyx3+y3=22xy ; (11,11)
Step 1
Find the first derivative and evaluate at x=11 and y=11 to find the slope of the tangent line.
Tap for more steps...
Step 1.1
Differentiate both sides of the equation.
ddx(x3+y3)=ddx(22xy)
Step 1.2
Differentiate the left side of the equation.
Tap for more steps...
Step 1.2.1
Differentiate.
Tap for more steps...
Step 1.2.1.1
By the Sum Rule, the derivative of x3+y3 with respect to x is ddx[x3]+ddx[y3].
ddx[x3]+ddx[y3]
Step 1.2.1.2
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=3.
3x2+ddx[y3]
3x2+ddx[y3]
Step 1.2.2
Evaluate ddx[y3].
Tap for more steps...
Step 1.2.2.1
Differentiate using the chain rule, which states that ddx[f(g(x))] is f(g(x))g(x) where f(x)=x3 and g(x)=y.
Tap for more steps...
Step 1.2.2.1.1
To apply the Chain Rule, set u as y.
3x2+ddu[u3]ddx[y]
Step 1.2.2.1.2
Differentiate using the Power Rule which states that ddu[un] is nun-1 where n=3.
3x2+3u2ddx[y]
Step 1.2.2.1.3
Replace all occurrences of u with y.
3x2+3y2ddx[y]
3x2+3y2ddx[y]
Step 1.2.2.2
Rewrite ddx[y] as y.
3x2+3y2y
3x2+3y2y
3x2+3y2y
Step 1.3
Differentiate the right side of the equation.
Tap for more steps...
Step 1.3.1
Since 22 is constant with respect to x, the derivative of 22xy with respect to x is 22ddx[xy].
22ddx[xy]
Step 1.3.2
Differentiate using the Product Rule which states that ddx[f(x)g(x)] is f(x)ddx[g(x)]+g(x)ddx[f(x)] where f(x)=x and g(x)=y.
22(xddx[y]+yddx[x])
Step 1.3.3
Rewrite ddx[y] as y.
22(xy+yddx[x])
Step 1.3.4
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=1.
22(xy+y1)
Step 1.3.5
Multiply y by 1.
22(xy+y)
Step 1.3.6
Apply the distributive property.
22xy+22y
22xy+22y
Step 1.4
Reform the equation by setting the left side equal to the right side.
3x2+3y2y=22xy+22y
Step 1.5
Solve for y.
Tap for more steps...
Step 1.5.1
Subtract 22xy from both sides of the equation.
3x2+3y2y-22xy=22y
Step 1.5.2
Subtract 3x2 from both sides of the equation.
3y2y-22xy=22y-3x2
Step 1.5.3
Factor y out of 3y2y-22xy.
Tap for more steps...
Step 1.5.3.1
Factor y out of 3y2y.
y(3y2)-22xy=22y-3x2
Step 1.5.3.2
Factor y out of -22xy.
y(3y2)+y(-22x)=22y-3x2
Step 1.5.3.3
Factor y out of y(3y2)+y(-22x).
y(3y2-22x)=22y-3x2
y(3y2-22x)=22y-3x2
Step 1.5.4
Divide each term in y(3y2-22x)=22y-3x2 by 3y2-22x and simplify.
Tap for more steps...
Step 1.5.4.1
Divide each term in y(3y2-22x)=22y-3x2 by 3y2-22x.
y(3y2-22x)3y2-22x=22y3y2-22x+-3x23y2-22x
Step 1.5.4.2
Simplify the left side.
Tap for more steps...
Step 1.5.4.2.1
Cancel the common factor of 3y2-22x.
Tap for more steps...
Step 1.5.4.2.1.1
Cancel the common factor.
y(3y2-22x)3y2-22x=22y3y2-22x+-3x23y2-22x
Step 1.5.4.2.1.2
Divide y by 1.
y=22y3y2-22x+-3x23y2-22x
y=22y3y2-22x+-3x23y2-22x
y=22y3y2-22x+-3x23y2-22x
Step 1.5.4.3
Simplify the right side.
Tap for more steps...
Step 1.5.4.3.1
Combine the numerators over the common denominator.
y=22y-3x23y2-22x
y=22y-3x23y2-22x
y=22y-3x23y2-22x
y=22y-3x23y2-22x
Step 1.6
Replace y with dydx.
dydx=22y-3x23y2-22x
Step 1.7
Evaluate at x=11 and y=11.
Tap for more steps...
Step 1.7.1
Replace the variable x with 11 in the expression.
22y-3(11)23y2-2211
Step 1.7.2
Replace the variable y with 11 in the expression.
22(11)-3(11)23(11)2-2211
Step 1.7.3
Cancel the common factor of 22(11)-3(11)2 and 3(11)2-2211.
Tap for more steps...
Step 1.7.3.1
Reorder terms.
-3(11)2+11223(11)2-2211
Step 1.7.3.2
Factor 11 out of -3(11)2.
11(-311)+11223(11)2-2211
Step 1.7.3.3
Factor 11 out of 1122.
11(-311)+11(22)3(11)2-2211
Step 1.7.3.4
Factor 11 out of 11(-311)+11(22).
11(-311+22)3(11)2-2211
Step 1.7.3.5
Cancel the common factors.
Tap for more steps...
Step 1.7.3.5.1
Factor 11 out of 3(11)2.
11(-311+22)11(311)-2211
Step 1.7.3.5.2
Factor 11 out of -2211.
11(-311+22)11(311)+11(-211)
Step 1.7.3.5.3
Factor 11 out of 11(311)+11(-211).
11(-311+22)11(311-211)
Step 1.7.3.5.4
Cancel the common factor.
11(-311+22)11(311-211)
Step 1.7.3.5.5
Rewrite the expression.
-311+22311-211
-311+22311-211
-311+22311-211
Step 1.7.4
Simplify the numerator.
Tap for more steps...
Step 1.7.4.1
Multiply -3 by 11.
-33+22311-211
Step 1.7.4.2
Add -33 and 22.
-11311-211
-11311-211
Step 1.7.5
Simplify the denominator.
Tap for more steps...
Step 1.7.5.1
Multiply 3 by 11.
-1133-211
Step 1.7.5.2
Multiply -2 by 11.
-1133-22
Step 1.7.5.3
Subtract 22 from 33.
-1111
-1111
Step 1.7.6
Divide -11 by 11.
-1
-1
-1
Step 2
Plug the slope and point values into the point-slope formula and solve for y.
Tap for more steps...
Step 2.1
Use the slope -1 and a given point (11,11) to substitute for x1 and y1 in the point-slope form y-y1=m(x-x1), which is derived from the slope equation m=y2-y1x2-x1.
y-(11)=-1(x-(11))
Step 2.2
Simplify the equation and keep it in point-slope form.
y-11=-1(x-11)
Step 2.3
Solve for y.
Tap for more steps...
Step 2.3.1
Simplify -1(x-11).
Tap for more steps...
Step 2.3.1.1
Rewrite.
y-11=0+0-1(x-11)
Step 2.3.1.2
Simplify by adding zeros.
y-11=-1(x-11)
Step 2.3.1.3
Apply the distributive property.
y-11=-1x-1-11
Step 2.3.1.4
Simplify the expression.
Tap for more steps...
Step 2.3.1.4.1
Rewrite -1x as -x.
y-11=-x-1-11
Step 2.3.1.4.2
Multiply -1 by -11.
y-11=-x+11
y-11=-x+11
y-11=-x+11
Step 2.3.2
Move all terms not containing y to the right side of the equation.
Tap for more steps...
Step 2.3.2.1
Add 11 to both sides of the equation.
y=-x+11+11
Step 2.3.2.2
Add 11 and 11.
y=-x+22
y=-x+22
y=-x+22
y=-x+22
Step 3
 [x2  12  π  xdx ]