Enter a problem...
Calculus Examples
x3+y3=22xyx3+y3=22xy ; (11,11)
Step 1
Step 1.1
Differentiate both sides of the equation.
ddx(x3+y3)=ddx(22xy)
Step 1.2
Differentiate the left side of the equation.
Step 1.2.1
Differentiate.
Step 1.2.1.1
By the Sum Rule, the derivative of x3+y3 with respect to x is ddx[x3]+ddx[y3].
ddx[x3]+ddx[y3]
Step 1.2.1.2
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=3.
3x2+ddx[y3]
3x2+ddx[y3]
Step 1.2.2
Evaluate ddx[y3].
Step 1.2.2.1
Differentiate using the chain rule, which states that ddx[f(g(x))] is f′(g(x))g′(x) where f(x)=x3 and g(x)=y.
Step 1.2.2.1.1
To apply the Chain Rule, set u as y.
3x2+ddu[u3]ddx[y]
Step 1.2.2.1.2
Differentiate using the Power Rule which states that ddu[un] is nun-1 where n=3.
3x2+3u2ddx[y]
Step 1.2.2.1.3
Replace all occurrences of u with y.
3x2+3y2ddx[y]
3x2+3y2ddx[y]
Step 1.2.2.2
Rewrite ddx[y] as y′.
3x2+3y2y′
3x2+3y2y′
3x2+3y2y′
Step 1.3
Differentiate the right side of the equation.
Step 1.3.1
Since 22 is constant with respect to x, the derivative of 22xy with respect to x is 22ddx[xy].
22ddx[xy]
Step 1.3.2
Differentiate using the Product Rule which states that ddx[f(x)g(x)] is f(x)ddx[g(x)]+g(x)ddx[f(x)] where f(x)=x and g(x)=y.
22(xddx[y]+yddx[x])
Step 1.3.3
Rewrite ddx[y] as y′.
22(xy′+yddx[x])
Step 1.3.4
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=1.
22(xy′+y⋅1)
Step 1.3.5
Multiply y by 1.
22(xy′+y)
Step 1.3.6
Apply the distributive property.
22xy′+22y
22xy′+22y
Step 1.4
Reform the equation by setting the left side equal to the right side.
3x2+3y2y′=22xy′+22y
Step 1.5
Solve for y′.
Step 1.5.1
Subtract 22xy′ from both sides of the equation.
3x2+3y2y′-22xy′=22y
Step 1.5.2
Subtract 3x2 from both sides of the equation.
3y2y′-22xy′=22y-3x2
Step 1.5.3
Factor y′ out of 3y2y′-22xy′.
Step 1.5.3.1
Factor y′ out of 3y2y′.
y′(3y2)-22xy′=22y-3x2
Step 1.5.3.2
Factor y′ out of -22xy′.
y′(3y2)+y′(-22x)=22y-3x2
Step 1.5.3.3
Factor y′ out of y′(3y2)+y′(-22x).
y′(3y2-22x)=22y-3x2
y′(3y2-22x)=22y-3x2
Step 1.5.4
Divide each term in y′(3y2-22x)=22y-3x2 by 3y2-22x and simplify.
Step 1.5.4.1
Divide each term in y′(3y2-22x)=22y-3x2 by 3y2-22x.
y′(3y2-22x)3y2-22x=22y3y2-22x+-3x23y2-22x
Step 1.5.4.2
Simplify the left side.
Step 1.5.4.2.1
Cancel the common factor of 3y2-22x.
Step 1.5.4.2.1.1
Cancel the common factor.
y′(3y2-22x)3y2-22x=22y3y2-22x+-3x23y2-22x
Step 1.5.4.2.1.2
Divide y′ by 1.
y′=22y3y2-22x+-3x23y2-22x
y′=22y3y2-22x+-3x23y2-22x
y′=22y3y2-22x+-3x23y2-22x
Step 1.5.4.3
Simplify the right side.
Step 1.5.4.3.1
Combine the numerators over the common denominator.
y′=22y-3x23y2-22x
y′=22y-3x23y2-22x
y′=22y-3x23y2-22x
y′=22y-3x23y2-22x
Step 1.6
Replace y′ with dydx.
dydx=22y-3x23y2-22x
Step 1.7
Evaluate at x=11 and y=11.
Step 1.7.1
Replace the variable x with 11 in the expression.
22y-3(11)23y2-22⋅11
Step 1.7.2
Replace the variable y with 11 in the expression.
22(11)-3(11)23(11)2-22⋅11
Step 1.7.3
Cancel the common factor of 22(11)-3(11)2 and 3(11)2-22⋅11.
Step 1.7.3.1
Reorder terms.
-3(11)2+11⋅223(11)2-22⋅11
Step 1.7.3.2
Factor 11 out of -3(11)2.
11(-3⋅11)+11⋅223(11)2-22⋅11
Step 1.7.3.3
Factor 11 out of 11⋅22.
11(-3⋅11)+11(22)3(11)2-22⋅11
Step 1.7.3.4
Factor 11 out of 11(-3⋅11)+11(22).
11(-3⋅11+22)3(11)2-22⋅11
Step 1.7.3.5
Cancel the common factors.
Step 1.7.3.5.1
Factor 11 out of 3(11)2.
11(-3⋅11+22)11(3⋅11)-22⋅11
Step 1.7.3.5.2
Factor 11 out of -22⋅11.
11(-3⋅11+22)11(3⋅11)+11(-2⋅11)
Step 1.7.3.5.3
Factor 11 out of 11(3⋅11)+11(-2⋅11).
11(-3⋅11+22)11(3⋅11-2⋅11)
Step 1.7.3.5.4
Cancel the common factor.
11(-3⋅11+22)11(3⋅11-2⋅11)
Step 1.7.3.5.5
Rewrite the expression.
-3⋅11+223⋅11-2⋅11
-3⋅11+223⋅11-2⋅11
-3⋅11+223⋅11-2⋅11
Step 1.7.4
Simplify the numerator.
Step 1.7.4.1
Multiply -3 by 11.
-33+223⋅11-2⋅11
Step 1.7.4.2
Add -33 and 22.
-113⋅11-2⋅11
-113⋅11-2⋅11
Step 1.7.5
Simplify the denominator.
Step 1.7.5.1
Multiply 3 by 11.
-1133-2⋅11
Step 1.7.5.2
Multiply -2 by 11.
-1133-22
Step 1.7.5.3
Subtract 22 from 33.
-1111
-1111
Step 1.7.6
Divide -11 by 11.
-1
-1
-1
Step 2
Step 2.1
Use the slope -1 and a given point (11,11) to substitute for x1 and y1 in the point-slope form y-y1=m(x-x1), which is derived from the slope equation m=y2-y1x2-x1.
y-(11)=-1⋅(x-(11))
Step 2.2
Simplify the equation and keep it in point-slope form.
y-11=-1⋅(x-11)
Step 2.3
Solve for y.
Step 2.3.1
Simplify -1⋅(x-11).
Step 2.3.1.1
Rewrite.
y-11=0+0-1⋅(x-11)
Step 2.3.1.2
Simplify by adding zeros.
y-11=-1⋅(x-11)
Step 2.3.1.3
Apply the distributive property.
y-11=-1x-1⋅-11
Step 2.3.1.4
Simplify the expression.
Step 2.3.1.4.1
Rewrite -1x as -x.
y-11=-x-1⋅-11
Step 2.3.1.4.2
Multiply -1 by -11.
y-11=-x+11
y-11=-x+11
y-11=-x+11
Step 2.3.2
Move all terms not containing y to the right side of the equation.
Step 2.3.2.1
Add 11 to both sides of the equation.
y=-x+11+11
Step 2.3.2.2
Add 11 and 11.
y=-x+22
y=-x+22
y=-x+22
y=-x+22
Step 3