Enter a problem...
Calculus Examples
(x2+y2)2=4x2y(x2+y2)2=4x2y , (-1,1)(−1,1)
Step 1
Step 1.1
Differentiate both sides of the equation.
ddx((x2+y2)2)=ddx(4x2y)ddx((x2+y2)2)=ddx(4x2y)
Step 1.2
Differentiate the left side of the equation.
Step 1.2.1
Differentiate using the chain rule, which states that ddx[f(g(x))]ddx[f(g(x))] is f′(g(x))g′(x) where f(x)=x2 and g(x)=x2+y2.
Step 1.2.1.1
To apply the Chain Rule, set u1 as x2+y2.
ddu1[u12]ddx[x2+y2]
Step 1.2.1.2
Differentiate using the Power Rule which states that ddu1[u1n] is nu1n-1 where n=2.
2u1ddx[x2+y2]
Step 1.2.1.3
Replace all occurrences of u1 with x2+y2.
2(x2+y2)ddx[x2+y2]
2(x2+y2)ddx[x2+y2]
Step 1.2.2
Differentiate.
Step 1.2.2.1
By the Sum Rule, the derivative of x2+y2 with respect to x is ddx[x2]+ddx[y2].
2(x2+y2)(ddx[x2]+ddx[y2])
Step 1.2.2.2
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=2.
2(x2+y2)(2x+ddx[y2])
2(x2+y2)(2x+ddx[y2])
Step 1.2.3
Differentiate using the chain rule, which states that ddx[f(g(x))] is f′(g(x))g′(x) where f(x)=x2 and g(x)=y.
Step 1.2.3.1
To apply the Chain Rule, set u2 as y.
2(x2+y2)(2x+ddu2[u22]ddx[y])
Step 1.2.3.2
Differentiate using the Power Rule which states that ddu2[u2n] is nu2n-1 where n=2.
2(x2+y2)(2x+2u2ddx[y])
Step 1.2.3.3
Replace all occurrences of u2 with y.
2(x2+y2)(2x+2yddx[y])
2(x2+y2)(2x+2yddx[y])
Step 1.2.4
Rewrite ddx[y] as y′.
2(x2+y2)(2x+2yy′)
Step 1.2.5
Simplify.
Step 1.2.5.1
Apply the distributive property.
(2x2+2y2)(2x+2yy′)
Step 1.2.5.2
Reorder the factors of (2x2+2y2)(2x+2yy′).
(2x+2yy′)(2x2+2y2)
(2x+2yy′)(2x2+2y2)
(2x+2yy′)(2x2+2y2)
Step 1.3
Differentiate the right side of the equation.
Step 1.3.1
Since 4 is constant with respect to x, the derivative of 4x2y with respect to x is 4ddx[x2y].
4ddx[x2y]
Step 1.3.2
Differentiate using the Product Rule which states that ddx[f(x)g(x)] is f(x)ddx[g(x)]+g(x)ddx[f(x)] where f(x)=x2 and g(x)=y.
4(x2ddx[y]+yddx[x2])
Step 1.3.3
Rewrite ddx[y] as y′.
4(x2y′+yddx[x2])
Step 1.3.4
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=2.
4(x2y′+y(2x))
Step 1.3.5
Move 2 to the left of y.
4(x2y′+2⋅yx)
Step 1.3.6
Simplify.
Step 1.3.6.1
Apply the distributive property.
4(x2y′)+4(2yx)
Step 1.3.6.2
Multiply 2 by 4.
4x2y′+8yx
Step 1.3.6.3
Reorder terms.
4x2y′+8xy
4x2y′+8xy
4x2y′+8xy
Step 1.4
Reform the equation by setting the left side equal to the right side.
(2x+2yy′)(2x2+2y2)=4x2y′+8xy
Step 1.5
Solve for y′.
Step 1.5.1
Simplify (2x+2yy′)(2x2+2y2).
Step 1.5.1.1
Rewrite.
0+0+(2x+2yy′)(2x2+2y2)=4x2y′+8xy
Step 1.5.1.2
Simplify by adding zeros.
(2x+2yy′)(2x2+2y2)=4x2y′+8xy
Step 1.5.1.3
Expand (2x+2yy′)(2x2+2y2) using the FOIL Method.
Step 1.5.1.3.1
Apply the distributive property.
2x(2x2+2y2)+2yy′(2x2+2y2)=4x2y′+8xy
Step 1.5.1.3.2
Apply the distributive property.
2x(2x2)+2x(2y2)+2yy′(2x2+2y2)=4x2y′+8xy
Step 1.5.1.3.3
Apply the distributive property.
2x(2x2)+2x(2y2)+2yy′(2x2)+2yy′(2y2)=4x2y′+8xy
2x(2x2)+2x(2y2)+2yy′(2x2)+2yy′(2y2)=4x2y′+8xy
Step 1.5.1.4
Simplify each term.
Step 1.5.1.4.1
Rewrite using the commutative property of multiplication.
2⋅2x⋅x2+2x(2y2)+2yy′(2x2)+2yy′(2y2)=4x2y′+8xy
Step 1.5.1.4.2
Multiply x by x2 by adding the exponents.
Step 1.5.1.4.2.1
Move x2.
2⋅2(x2x)+2x(2y2)+2yy′(2x2)+2yy′(2y2)=4x2y′+8xy
Step 1.5.1.4.2.2
Multiply x2 by x.
Step 1.5.1.4.2.2.1
Raise x to the power of 1.
2⋅2(x2x1)+2x(2y2)+2yy′(2x2)+2yy′(2y2)=4x2y′+8xy
Step 1.5.1.4.2.2.2
Use the power rule aman=am+n to combine exponents.
2⋅2x2+1+2x(2y2)+2yy′(2x2)+2yy′(2y2)=4x2y′+8xy
2⋅2x2+1+2x(2y2)+2yy′(2x2)+2yy′(2y2)=4x2y′+8xy
Step 1.5.1.4.2.3
Add 2 and 1.
2⋅2x3+2x(2y2)+2yy′(2x2)+2yy′(2y2)=4x2y′+8xy
2⋅2x3+2x(2y2)+2yy′(2x2)+2yy′(2y2)=4x2y′+8xy
Step 1.5.1.4.3
Multiply 2 by 2.
4x3+2x(2y2)+2yy′(2x2)+2yy′(2y2)=4x2y′+8xy
Step 1.5.1.4.4
Rewrite using the commutative property of multiplication.
4x3+2⋅2xy2+2yy′(2x2)+2yy′(2y2)=4x2y′+8xy
Step 1.5.1.4.5
Multiply 2 by 2.
4x3+4xy2+2yy′(2x2)+2yy′(2y2)=4x2y′+8xy
Step 1.5.1.4.6
Multiply 2 by 2.
4x3+4xy2+4yy′x2+2yy′(2y2)=4x2y′+8xy
Step 1.5.1.4.7
Multiply y by y2 by adding the exponents.
Step 1.5.1.4.7.1
Move y2.
4x3+4xy2+4yy′x2+2(y2y)y′⋅2=4x2y′+8xy
Step 1.5.1.4.7.2
Multiply y2 by y.
Step 1.5.1.4.7.2.1
Raise y to the power of 1.
4x3+4xy2+4yy′x2+2(y2y1)y′⋅2=4x2y′+8xy
Step 1.5.1.4.7.2.2
Use the power rule aman=am+n to combine exponents.
4x3+4xy2+4yy′x2+2y2+1y′⋅2=4x2y′+8xy
4x3+4xy2+4yy′x2+2y2+1y′⋅2=4x2y′+8xy
Step 1.5.1.4.7.3
Add 2 and 1.
4x3+4xy2+4yy′x2+2y3y′⋅2=4x2y′+8xy
4x3+4xy2+4yy′x2+2y3y′⋅2=4x2y′+8xy
Step 1.5.1.4.8
Multiply 2 by 2.
4x3+4xy2+4yy′x2+4y3y′=4x2y′+8xy
4x3+4xy2+4yy′x2+4y3y′=4x2y′+8xy
4x3+4xy2+4yy′x2+4y3y′=4x2y′+8xy
Step 1.5.2
Subtract 4x2y′ from both sides of the equation.
4x3+4xy2+4yy′x2+4y3y′-4x2y′=8xy
Step 1.5.3
Move all terms not containing y′ to the right side of the equation.
Step 1.5.3.1
Subtract 4x3 from both sides of the equation.
4xy2+4yy′x2+4y3y′-4x2y′=8xy-4x3
Step 1.5.3.2
Subtract 4xy2 from both sides of the equation.
4yy′x2+4y3y′-4x2y′=8xy-4x3-4xy2
4yy′x2+4y3y′-4x2y′=8xy-4x3-4xy2
Step 1.5.4
Factor 4y′ out of 4yy′x2+4y3y′-4x2y′.
Step 1.5.4.1
Factor 4y′ out of 4yy′x2.
4y′(yx2)+4y3y′-4x2y′=8xy-4x3-4xy2
Step 1.5.4.2
Factor 4y′ out of 4y3y′.
4y′(yx2)+4y′y3-4x2y′=8xy-4x3-4xy2
Step 1.5.4.3
Factor 4y′ out of -4x2y′.
4y′(yx2)+4y′y3+4y′(-x2)=8xy-4x3-4xy2
Step 1.5.4.4
Factor 4y′ out of 4y′(yx2)+4y′y3.
4y′(yx2+y3)+4y′(-x2)=8xy-4x3-4xy2
Step 1.5.4.5
Factor 4y′ out of 4y′(yx2+y3)+4y′(-x2).
4y′(yx2+y3-x2)=8xy-4x3-4xy2
4y′(yx2+y3-x2)=8xy-4x3-4xy2
Step 1.5.5
Divide each term in 4y′(yx2+y3-x2)=8xy-4x3-4xy2 by 4(yx2+y3-x2) and simplify.
Step 1.5.5.1
Divide each term in 4y′(yx2+y3-x2)=8xy-4x3-4xy2 by 4(yx2+y3-x2).
4y′(yx2+y3-x2)4(yx2+y3-x2)=8xy4(yx2+y3-x2)+-4x34(yx2+y3-x2)+-4xy24(yx2+y3-x2)
Step 1.5.5.2
Simplify the left side.
Step 1.5.5.2.1
Cancel the common factor of 4.
Step 1.5.5.2.1.1
Cancel the common factor.
4y′(yx2+y3-x2)4(yx2+y3-x2)=8xy4(yx2+y3-x2)+-4x34(yx2+y3-x2)+-4xy24(yx2+y3-x2)
Step 1.5.5.2.1.2
Rewrite the expression.
y′(yx2+y3-x2)yx2+y3-x2=8xy4(yx2+y3-x2)+-4x34(yx2+y3-x2)+-4xy24(yx2+y3-x2)
y′(yx2+y3-x2)yx2+y3-x2=8xy4(yx2+y3-x2)+-4x34(yx2+y3-x2)+-4xy24(yx2+y3-x2)
Step 1.5.5.2.2
Cancel the common factor of yx2+y3-x2.
Step 1.5.5.2.2.1
Cancel the common factor.
y′(yx2+y3-x2)yx2+y3-x2=8xy4(yx2+y3-x2)+-4x34(yx2+y3-x2)+-4xy24(yx2+y3-x2)
Step 1.5.5.2.2.2
Divide y′ by 1.
y′=8xy4(yx2+y3-x2)+-4x34(yx2+y3-x2)+-4xy24(yx2+y3-x2)
y′=8xy4(yx2+y3-x2)+-4x34(yx2+y3-x2)+-4xy24(yx2+y3-x2)
y′=8xy4(yx2+y3-x2)+-4x34(yx2+y3-x2)+-4xy24(yx2+y3-x2)
Step 1.5.5.3
Simplify the right side.
Step 1.5.5.3.1
Simplify terms.
Step 1.5.5.3.1.1
Simplify each term.
Step 1.5.5.3.1.1.1
Cancel the common factor of 8 and 4.
Step 1.5.5.3.1.1.1.1
Factor 4 out of 8xy.
y′=4(2xy)4(yx2+y3-x2)+-4x34(yx2+y3-x2)+-4xy24(yx2+y3-x2)
Step 1.5.5.3.1.1.1.2
Cancel the common factors.
Step 1.5.5.3.1.1.1.2.1
Cancel the common factor.
y′=4(2xy)4(yx2+y3-x2)+-4x34(yx2+y3-x2)+-4xy24(yx2+y3-x2)
Step 1.5.5.3.1.1.1.2.2
Rewrite the expression.
y′=2xyyx2+y3-x2+-4x34(yx2+y3-x2)+-4xy24(yx2+y3-x2)
y′=2xyyx2+y3-x2+-4x34(yx2+y3-x2)+-4xy24(yx2+y3-x2)
y′=2xyyx2+y3-x2+-4x34(yx2+y3-x2)+-4xy24(yx2+y3-x2)
Step 1.5.5.3.1.1.2
Cancel the common factor of -4 and 4.
Step 1.5.5.3.1.1.2.1
Factor 4 out of -4x3.
y′=2xyyx2+y3-x2+4(-x3)4(yx2+y3-x2)+-4xy24(yx2+y3-x2)
Step 1.5.5.3.1.1.2.2
Cancel the common factors.
Step 1.5.5.3.1.1.2.2.1
Cancel the common factor.
y′=2xyyx2+y3-x2+4(-x3)4(yx2+y3-x2)+-4xy24(yx2+y3-x2)
Step 1.5.5.3.1.1.2.2.2
Rewrite the expression.
y′=2xyyx2+y3-x2+-x3yx2+y3-x2+-4xy24(yx2+y3-x2)
y′=2xyyx2+y3-x2+-x3yx2+y3-x2+-4xy24(yx2+y3-x2)
y′=2xyyx2+y3-x2+-x3yx2+y3-x2+-4xy24(yx2+y3-x2)
Step 1.5.5.3.1.1.3
Move the negative in front of the fraction.
y′=2xyyx2+y3-x2-x3yx2+y3-x2+-4xy24(yx2+y3-x2)
Step 1.5.5.3.1.1.4
Cancel the common factor of -4 and 4.
Step 1.5.5.3.1.1.4.1
Factor 4 out of -4xy2.
y′=2xyyx2+y3-x2-x3yx2+y3-x2+4(-xy2)4(yx2+y3-x2)
Step 1.5.5.3.1.1.4.2
Cancel the common factors.
Step 1.5.5.3.1.1.4.2.1
Cancel the common factor.
y′=2xyyx2+y3-x2-x3yx2+y3-x2+4(-xy2)4(yx2+y3-x2)
Step 1.5.5.3.1.1.4.2.2
Rewrite the expression.
y′=2xyyx2+y3-x2-x3yx2+y3-x2+-xy2yx2+y3-x2
y′=2xyyx2+y3-x2-x3yx2+y3-x2+-xy2yx2+y3-x2
y′=2xyyx2+y3-x2-x3yx2+y3-x2+-xy2yx2+y3-x2
Step 1.5.5.3.1.1.5
Move the negative in front of the fraction.
y′=2xyyx2+y3-x2-x3yx2+y3-x2-xy2yx2+y3-x2
y′=2xyyx2+y3-x2-x3yx2+y3-x2-xy2yx2+y3-x2
Step 1.5.5.3.1.2
Combine into one fraction.
Step 1.5.5.3.1.2.1
Combine the numerators over the common denominator.
y′=2xy-x3yx2+y3-x2-xy2yx2+y3-x2
Step 1.5.5.3.1.2.2
Combine the numerators over the common denominator.
y′=2xy-x3-xy2yx2+y3-x2
y′=2xy-x3-xy2yx2+y3-x2
y′=2xy-x3-xy2yx2+y3-x2
Step 1.5.5.3.2
Simplify the numerator.
Step 1.5.5.3.2.1
Factor x out of 2xy-x3-xy2.
Step 1.5.5.3.2.1.1
Factor x out of 2xy.
y′=x(2y)-x3-xy2yx2+y3-x2
Step 1.5.5.3.2.1.2
Factor x out of -x3.
y′=x(2y)+x(-x2)-xy2yx2+y3-x2
Step 1.5.5.3.2.1.3
Factor x out of -xy2.
y′=x(2y)+x(-x2)+x(-1y2)yx2+y3-x2
Step 1.5.5.3.2.1.4
Factor x out of x(2y)+x(-x2).
y′=x(2y-x2)+x(-1y2)yx2+y3-x2
Step 1.5.5.3.2.1.5
Factor x out of x(2y-x2)+x(-1y2).
y′=x(2y-x2-1y2)yx2+y3-x2
y′=x(2y-x2-1y2)yx2+y3-x2
Step 1.5.5.3.2.2
Rewrite -1y2 as -y2.
y′=x(2y-x2-y2)yx2+y3-x2
y′=x(2y-x2-y2)yx2+y3-x2
y′=x(2y-x2-y2)yx2+y3-x2
y′=x(2y-x2-y2)yx2+y3-x2
y′=x(2y-x2-y2)yx2+y3-x2
Step 1.6
Replace y′ with dydx.
dydx=x(2y-x2-y2)yx2+y3-x2
Step 1.7
Evaluate at x=-1 and y=1.
Step 1.7.1
Replace the variable x with -1 in the expression.
(-1)(2y-(-1)2-y2)y(-1)2+y3-(-1)2
Step 1.7.2
Replace the variable y with 1 in the expression.
(-1)(2(1)-(-1)2-(1)2)(1)(-1)2+(1)3-(-1)2
Step 1.7.3
Multiply -1 by (-1)2 by adding the exponents.
Step 1.7.3.1
Multiply -1 by (-1)2.
Step 1.7.3.1.1
Raise -1 to the power of 1.
-1(2(1)+(-1)1(-1)2-(1)2)(1)(-1)2+(1)3-(-1)2
Step 1.7.3.1.2
Use the power rule aman=am+n to combine exponents.
-1(2(1)+(-1)1+2-(1)2)(1)(-1)2+(1)3-(-1)2
-1(2(1)+(-1)1+2-(1)2)(1)(-1)2+(1)3-(-1)2
Step 1.7.3.2
Add 1 and 2.
-1(2(1)+(-1)3-(1)2)(1)(-1)2+(1)3-(-1)2
-1(2(1)+(-1)3-(1)2)(1)(-1)2+(1)3-(-1)2
Step 1.7.4
Simplify.
Step 1.7.4.1
Multiply 2 by 1.
-1(2+(-1)3-(1)2)(1)(-1)2+(1)3-(-1)2
Step 1.7.4.2
Multiply (-1)2 by 1.
-1(2+(-1)3-(1)2)(-1)2+(1)3-(-1)2
-1(2+(-1)3-(1)2)(-1)2+(1)3-(-1)2
Step 1.7.5
Simplify the numerator.
Step 1.7.5.1
Raise -1 to the power of 3.
-1(2-1-12)(-1)2+13-(-1)2
Step 1.7.5.2
One to any power is one.
-1(2-1-1⋅1)(-1)2+13-(-1)2
Step 1.7.5.3
Multiply -1 by 1.
-1(2-1-1)(-1)2+13-(-1)2
Step 1.7.5.4
Subtract 1 from 2.
-1(1-1)(-1)2+13-(-1)2
Step 1.7.5.5
Subtract 1 from 1.
-1⋅0(-1)2+13-(-1)2
-1⋅0(-1)2+13-(-1)2
Step 1.7.6
Simplify the denominator.
Step 1.7.6.1
Raise -1 to the power of 2.
-1⋅01+13-(-1)2
Step 1.7.6.2
One to any power is one.
-1⋅01+1-(-1)2
Step 1.7.6.3
Multiply -1 by (-1)2 by adding the exponents.
Step 1.7.6.3.1
Multiply -1 by (-1)2.
Step 1.7.6.3.1.1
Raise -1 to the power of 1.
-1⋅01+1+(-1)1(-1)2
Step 1.7.6.3.1.2
Use the power rule aman=am+n to combine exponents.
-1⋅01+1+(-1)1+2
-1⋅01+1+(-1)1+2
Step 1.7.6.3.2
Add 1 and 2.
-1⋅01+1+(-1)3
-1⋅01+1+(-1)3
Step 1.7.6.4
Raise -1 to the power of 3.
-1⋅01+1-1
Step 1.7.6.5
Add 1 and 1.
-1⋅02-1
Step 1.7.6.6
Subtract 1 from 2.
-1⋅01
-1⋅01
Step 1.7.7
Simplify the expression.
Step 1.7.7.1
Multiply -1 by 0.
01
Step 1.7.7.2
Divide 0 by 1.
0
0
0
0
Step 2
Step 2.1
Use the slope 0 and a given point (-1,1) to substitute for x1 and y1 in the point-slope form y-y1=m(x-x1), which is derived from the slope equation m=y2-y1x2-x1.
y-(1)=0⋅(x-(-1))
Step 2.2
Simplify the equation and keep it in point-slope form.
y-1=0⋅(x+1)
Step 2.3
Solve for y.
Step 2.3.1
Multiply 0 by x+1.
y-1=0
Step 2.3.2
Add 1 to both sides of the equation.
y=1
y=1
y=1
Step 3