Calculus Examples

Find the Tangent Line at (-1,1) (x^2+y^2)^2=4x^2y , (-1,1)
(x2+y2)2=4x2y(x2+y2)2=4x2y , (-1,1)(1,1)
Step 1
Find the first derivative and evaluate at x=-1x=1 and y=1y=1 to find the slope of the tangent line.
Tap for more steps...
Step 1.1
Differentiate both sides of the equation.
ddx((x2+y2)2)=ddx(4x2y)ddx((x2+y2)2)=ddx(4x2y)
Step 1.2
Differentiate the left side of the equation.
Tap for more steps...
Step 1.2.1
Differentiate using the chain rule, which states that ddx[f(g(x))]ddx[f(g(x))] is f(g(x))g(x) where f(x)=x2 and g(x)=x2+y2.
Tap for more steps...
Step 1.2.1.1
To apply the Chain Rule, set u1 as x2+y2.
ddu1[u12]ddx[x2+y2]
Step 1.2.1.2
Differentiate using the Power Rule which states that ddu1[u1n] is nu1n-1 where n=2.
2u1ddx[x2+y2]
Step 1.2.1.3
Replace all occurrences of u1 with x2+y2.
2(x2+y2)ddx[x2+y2]
2(x2+y2)ddx[x2+y2]
Step 1.2.2
Differentiate.
Tap for more steps...
Step 1.2.2.1
By the Sum Rule, the derivative of x2+y2 with respect to x is ddx[x2]+ddx[y2].
2(x2+y2)(ddx[x2]+ddx[y2])
Step 1.2.2.2
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=2.
2(x2+y2)(2x+ddx[y2])
2(x2+y2)(2x+ddx[y2])
Step 1.2.3
Differentiate using the chain rule, which states that ddx[f(g(x))] is f(g(x))g(x) where f(x)=x2 and g(x)=y.
Tap for more steps...
Step 1.2.3.1
To apply the Chain Rule, set u2 as y.
2(x2+y2)(2x+ddu2[u22]ddx[y])
Step 1.2.3.2
Differentiate using the Power Rule which states that ddu2[u2n] is nu2n-1 where n=2.
2(x2+y2)(2x+2u2ddx[y])
Step 1.2.3.3
Replace all occurrences of u2 with y.
2(x2+y2)(2x+2yddx[y])
2(x2+y2)(2x+2yddx[y])
Step 1.2.4
Rewrite ddx[y] as y.
2(x2+y2)(2x+2yy)
Step 1.2.5
Simplify.
Tap for more steps...
Step 1.2.5.1
Apply the distributive property.
(2x2+2y2)(2x+2yy)
Step 1.2.5.2
Reorder the factors of (2x2+2y2)(2x+2yy).
(2x+2yy)(2x2+2y2)
(2x+2yy)(2x2+2y2)
(2x+2yy)(2x2+2y2)
Step 1.3
Differentiate the right side of the equation.
Tap for more steps...
Step 1.3.1
Since 4 is constant with respect to x, the derivative of 4x2y with respect to x is 4ddx[x2y].
4ddx[x2y]
Step 1.3.2
Differentiate using the Product Rule which states that ddx[f(x)g(x)] is f(x)ddx[g(x)]+g(x)ddx[f(x)] where f(x)=x2 and g(x)=y.
4(x2ddx[y]+yddx[x2])
Step 1.3.3
Rewrite ddx[y] as y.
4(x2y+yddx[x2])
Step 1.3.4
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=2.
4(x2y+y(2x))
Step 1.3.5
Move 2 to the left of y.
4(x2y+2yx)
Step 1.3.6
Simplify.
Tap for more steps...
Step 1.3.6.1
Apply the distributive property.
4(x2y)+4(2yx)
Step 1.3.6.2
Multiply 2 by 4.
4x2y+8yx
Step 1.3.6.3
Reorder terms.
4x2y+8xy
4x2y+8xy
4x2y+8xy
Step 1.4
Reform the equation by setting the left side equal to the right side.
(2x+2yy)(2x2+2y2)=4x2y+8xy
Step 1.5
Solve for y.
Tap for more steps...
Step 1.5.1
Simplify (2x+2yy)(2x2+2y2).
Tap for more steps...
Step 1.5.1.1
Rewrite.
0+0+(2x+2yy)(2x2+2y2)=4x2y+8xy
Step 1.5.1.2
Simplify by adding zeros.
(2x+2yy)(2x2+2y2)=4x2y+8xy
Step 1.5.1.3
Expand (2x+2yy)(2x2+2y2) using the FOIL Method.
Tap for more steps...
Step 1.5.1.3.1
Apply the distributive property.
2x(2x2+2y2)+2yy(2x2+2y2)=4x2y+8xy
Step 1.5.1.3.2
Apply the distributive property.
2x(2x2)+2x(2y2)+2yy(2x2+2y2)=4x2y+8xy
Step 1.5.1.3.3
Apply the distributive property.
2x(2x2)+2x(2y2)+2yy(2x2)+2yy(2y2)=4x2y+8xy
2x(2x2)+2x(2y2)+2yy(2x2)+2yy(2y2)=4x2y+8xy
Step 1.5.1.4
Simplify each term.
Tap for more steps...
Step 1.5.1.4.1
Rewrite using the commutative property of multiplication.
22xx2+2x(2y2)+2yy(2x2)+2yy(2y2)=4x2y+8xy
Step 1.5.1.4.2
Multiply x by x2 by adding the exponents.
Tap for more steps...
Step 1.5.1.4.2.1
Move x2.
22(x2x)+2x(2y2)+2yy(2x2)+2yy(2y2)=4x2y+8xy
Step 1.5.1.4.2.2
Multiply x2 by x.
Tap for more steps...
Step 1.5.1.4.2.2.1
Raise x to the power of 1.
22(x2x1)+2x(2y2)+2yy(2x2)+2yy(2y2)=4x2y+8xy
Step 1.5.1.4.2.2.2
Use the power rule aman=am+n to combine exponents.
22x2+1+2x(2y2)+2yy(2x2)+2yy(2y2)=4x2y+8xy
22x2+1+2x(2y2)+2yy(2x2)+2yy(2y2)=4x2y+8xy
Step 1.5.1.4.2.3
Add 2 and 1.
22x3+2x(2y2)+2yy(2x2)+2yy(2y2)=4x2y+8xy
22x3+2x(2y2)+2yy(2x2)+2yy(2y2)=4x2y+8xy
Step 1.5.1.4.3
Multiply 2 by 2.
4x3+2x(2y2)+2yy(2x2)+2yy(2y2)=4x2y+8xy
Step 1.5.1.4.4
Rewrite using the commutative property of multiplication.
4x3+22xy2+2yy(2x2)+2yy(2y2)=4x2y+8xy
Step 1.5.1.4.5
Multiply 2 by 2.
4x3+4xy2+2yy(2x2)+2yy(2y2)=4x2y+8xy
Step 1.5.1.4.6
Multiply 2 by 2.
4x3+4xy2+4yyx2+2yy(2y2)=4x2y+8xy
Step 1.5.1.4.7
Multiply y by y2 by adding the exponents.
Tap for more steps...
Step 1.5.1.4.7.1
Move y2.
4x3+4xy2+4yyx2+2(y2y)y2=4x2y+8xy
Step 1.5.1.4.7.2
Multiply y2 by y.
Tap for more steps...
Step 1.5.1.4.7.2.1
Raise y to the power of 1.
4x3+4xy2+4yyx2+2(y2y1)y2=4x2y+8xy
Step 1.5.1.4.7.2.2
Use the power rule aman=am+n to combine exponents.
4x3+4xy2+4yyx2+2y2+1y2=4x2y+8xy
4x3+4xy2+4yyx2+2y2+1y2=4x2y+8xy
Step 1.5.1.4.7.3
Add 2 and 1.
4x3+4xy2+4yyx2+2y3y2=4x2y+8xy
4x3+4xy2+4yyx2+2y3y2=4x2y+8xy
Step 1.5.1.4.8
Multiply 2 by 2.
4x3+4xy2+4yyx2+4y3y=4x2y+8xy
4x3+4xy2+4yyx2+4y3y=4x2y+8xy
4x3+4xy2+4yyx2+4y3y=4x2y+8xy
Step 1.5.2
Subtract 4x2y from both sides of the equation.
4x3+4xy2+4yyx2+4y3y-4x2y=8xy
Step 1.5.3
Move all terms not containing y to the right side of the equation.
Tap for more steps...
Step 1.5.3.1
Subtract 4x3 from both sides of the equation.
4xy2+4yyx2+4y3y-4x2y=8xy-4x3
Step 1.5.3.2
Subtract 4xy2 from both sides of the equation.
4yyx2+4y3y-4x2y=8xy-4x3-4xy2
4yyx2+4y3y-4x2y=8xy-4x3-4xy2
Step 1.5.4
Factor 4y out of 4yyx2+4y3y-4x2y.
Tap for more steps...
Step 1.5.4.1
Factor 4y out of 4yyx2.
4y(yx2)+4y3y-4x2y=8xy-4x3-4xy2
Step 1.5.4.2
Factor 4y out of 4y3y.
4y(yx2)+4yy3-4x2y=8xy-4x3-4xy2
Step 1.5.4.3
Factor 4y out of -4x2y.
4y(yx2)+4yy3+4y(-x2)=8xy-4x3-4xy2
Step 1.5.4.4
Factor 4y out of 4y(yx2)+4yy3.
4y(yx2+y3)+4y(-x2)=8xy-4x3-4xy2
Step 1.5.4.5
Factor 4y out of 4y(yx2+y3)+4y(-x2).
4y(yx2+y3-x2)=8xy-4x3-4xy2
4y(yx2+y3-x2)=8xy-4x3-4xy2
Step 1.5.5
Divide each term in 4y(yx2+y3-x2)=8xy-4x3-4xy2 by 4(yx2+y3-x2) and simplify.
Tap for more steps...
Step 1.5.5.1
Divide each term in 4y(yx2+y3-x2)=8xy-4x3-4xy2 by 4(yx2+y3-x2).
4y(yx2+y3-x2)4(yx2+y3-x2)=8xy4(yx2+y3-x2)+-4x34(yx2+y3-x2)+-4xy24(yx2+y3-x2)
Step 1.5.5.2
Simplify the left side.
Tap for more steps...
Step 1.5.5.2.1
Cancel the common factor of 4.
Tap for more steps...
Step 1.5.5.2.1.1
Cancel the common factor.
4y(yx2+y3-x2)4(yx2+y3-x2)=8xy4(yx2+y3-x2)+-4x34(yx2+y3-x2)+-4xy24(yx2+y3-x2)
Step 1.5.5.2.1.2
Rewrite the expression.
y(yx2+y3-x2)yx2+y3-x2=8xy4(yx2+y3-x2)+-4x34(yx2+y3-x2)+-4xy24(yx2+y3-x2)
y(yx2+y3-x2)yx2+y3-x2=8xy4(yx2+y3-x2)+-4x34(yx2+y3-x2)+-4xy24(yx2+y3-x2)
Step 1.5.5.2.2
Cancel the common factor of yx2+y3-x2.
Tap for more steps...
Step 1.5.5.2.2.1
Cancel the common factor.
y(yx2+y3-x2)yx2+y3-x2=8xy4(yx2+y3-x2)+-4x34(yx2+y3-x2)+-4xy24(yx2+y3-x2)
Step 1.5.5.2.2.2
Divide y by 1.
y=8xy4(yx2+y3-x2)+-4x34(yx2+y3-x2)+-4xy24(yx2+y3-x2)
y=8xy4(yx2+y3-x2)+-4x34(yx2+y3-x2)+-4xy24(yx2+y3-x2)
y=8xy4(yx2+y3-x2)+-4x34(yx2+y3-x2)+-4xy24(yx2+y3-x2)
Step 1.5.5.3
Simplify the right side.
Tap for more steps...
Step 1.5.5.3.1
Simplify terms.
Tap for more steps...
Step 1.5.5.3.1.1
Simplify each term.
Tap for more steps...
Step 1.5.5.3.1.1.1
Cancel the common factor of 8 and 4.
Tap for more steps...
Step 1.5.5.3.1.1.1.1
Factor 4 out of 8xy.
y=4(2xy)4(yx2+y3-x2)+-4x34(yx2+y3-x2)+-4xy24(yx2+y3-x2)
Step 1.5.5.3.1.1.1.2
Cancel the common factors.
Tap for more steps...
Step 1.5.5.3.1.1.1.2.1
Cancel the common factor.
y=4(2xy)4(yx2+y3-x2)+-4x34(yx2+y3-x2)+-4xy24(yx2+y3-x2)
Step 1.5.5.3.1.1.1.2.2
Rewrite the expression.
y=2xyyx2+y3-x2+-4x34(yx2+y3-x2)+-4xy24(yx2+y3-x2)
y=2xyyx2+y3-x2+-4x34(yx2+y3-x2)+-4xy24(yx2+y3-x2)
y=2xyyx2+y3-x2+-4x34(yx2+y3-x2)+-4xy24(yx2+y3-x2)
Step 1.5.5.3.1.1.2
Cancel the common factor of -4 and 4.
Tap for more steps...
Step 1.5.5.3.1.1.2.1
Factor 4 out of -4x3.
y=2xyyx2+y3-x2+4(-x3)4(yx2+y3-x2)+-4xy24(yx2+y3-x2)
Step 1.5.5.3.1.1.2.2
Cancel the common factors.
Tap for more steps...
Step 1.5.5.3.1.1.2.2.1
Cancel the common factor.
y=2xyyx2+y3-x2+4(-x3)4(yx2+y3-x2)+-4xy24(yx2+y3-x2)
Step 1.5.5.3.1.1.2.2.2
Rewrite the expression.
y=2xyyx2+y3-x2+-x3yx2+y3-x2+-4xy24(yx2+y3-x2)
y=2xyyx2+y3-x2+-x3yx2+y3-x2+-4xy24(yx2+y3-x2)
y=2xyyx2+y3-x2+-x3yx2+y3-x2+-4xy24(yx2+y3-x2)
Step 1.5.5.3.1.1.3
Move the negative in front of the fraction.
y=2xyyx2+y3-x2-x3yx2+y3-x2+-4xy24(yx2+y3-x2)
Step 1.5.5.3.1.1.4
Cancel the common factor of -4 and 4.
Tap for more steps...
Step 1.5.5.3.1.1.4.1
Factor 4 out of -4xy2.
y=2xyyx2+y3-x2-x3yx2+y3-x2+4(-xy2)4(yx2+y3-x2)
Step 1.5.5.3.1.1.4.2
Cancel the common factors.
Tap for more steps...
Step 1.5.5.3.1.1.4.2.1
Cancel the common factor.
y=2xyyx2+y3-x2-x3yx2+y3-x2+4(-xy2)4(yx2+y3-x2)
Step 1.5.5.3.1.1.4.2.2
Rewrite the expression.
y=2xyyx2+y3-x2-x3yx2+y3-x2+-xy2yx2+y3-x2
y=2xyyx2+y3-x2-x3yx2+y3-x2+-xy2yx2+y3-x2
y=2xyyx2+y3-x2-x3yx2+y3-x2+-xy2yx2+y3-x2
Step 1.5.5.3.1.1.5
Move the negative in front of the fraction.
y=2xyyx2+y3-x2-x3yx2+y3-x2-xy2yx2+y3-x2
y=2xyyx2+y3-x2-x3yx2+y3-x2-xy2yx2+y3-x2
Step 1.5.5.3.1.2
Combine into one fraction.
Tap for more steps...
Step 1.5.5.3.1.2.1
Combine the numerators over the common denominator.
y=2xy-x3yx2+y3-x2-xy2yx2+y3-x2
Step 1.5.5.3.1.2.2
Combine the numerators over the common denominator.
y=2xy-x3-xy2yx2+y3-x2
y=2xy-x3-xy2yx2+y3-x2
y=2xy-x3-xy2yx2+y3-x2
Step 1.5.5.3.2
Simplify the numerator.
Tap for more steps...
Step 1.5.5.3.2.1
Factor x out of 2xy-x3-xy2.
Tap for more steps...
Step 1.5.5.3.2.1.1
Factor x out of 2xy.
y=x(2y)-x3-xy2yx2+y3-x2
Step 1.5.5.3.2.1.2
Factor x out of -x3.
y=x(2y)+x(-x2)-xy2yx2+y3-x2
Step 1.5.5.3.2.1.3
Factor x out of -xy2.
y=x(2y)+x(-x2)+x(-1y2)yx2+y3-x2
Step 1.5.5.3.2.1.4
Factor x out of x(2y)+x(-x2).
y=x(2y-x2)+x(-1y2)yx2+y3-x2
Step 1.5.5.3.2.1.5
Factor x out of x(2y-x2)+x(-1y2).
y=x(2y-x2-1y2)yx2+y3-x2
y=x(2y-x2-1y2)yx2+y3-x2
Step 1.5.5.3.2.2
Rewrite -1y2 as -y2.
y=x(2y-x2-y2)yx2+y3-x2
y=x(2y-x2-y2)yx2+y3-x2
y=x(2y-x2-y2)yx2+y3-x2
y=x(2y-x2-y2)yx2+y3-x2
y=x(2y-x2-y2)yx2+y3-x2
Step 1.6
Replace y with dydx.
dydx=x(2y-x2-y2)yx2+y3-x2
Step 1.7
Evaluate at x=-1 and y=1.
Tap for more steps...
Step 1.7.1
Replace the variable x with -1 in the expression.
(-1)(2y-(-1)2-y2)y(-1)2+y3-(-1)2
Step 1.7.2
Replace the variable y with 1 in the expression.
(-1)(2(1)-(-1)2-(1)2)(1)(-1)2+(1)3-(-1)2
Step 1.7.3
Multiply -1 by (-1)2 by adding the exponents.
Tap for more steps...
Step 1.7.3.1
Multiply -1 by (-1)2.
Tap for more steps...
Step 1.7.3.1.1
Raise -1 to the power of 1.
-1(2(1)+(-1)1(-1)2-(1)2)(1)(-1)2+(1)3-(-1)2
Step 1.7.3.1.2
Use the power rule aman=am+n to combine exponents.
-1(2(1)+(-1)1+2-(1)2)(1)(-1)2+(1)3-(-1)2
-1(2(1)+(-1)1+2-(1)2)(1)(-1)2+(1)3-(-1)2
Step 1.7.3.2
Add 1 and 2.
-1(2(1)+(-1)3-(1)2)(1)(-1)2+(1)3-(-1)2
-1(2(1)+(-1)3-(1)2)(1)(-1)2+(1)3-(-1)2
Step 1.7.4
Simplify.
Tap for more steps...
Step 1.7.4.1
Multiply 2 by 1.
-1(2+(-1)3-(1)2)(1)(-1)2+(1)3-(-1)2
Step 1.7.4.2
Multiply (-1)2 by 1.
-1(2+(-1)3-(1)2)(-1)2+(1)3-(-1)2
-1(2+(-1)3-(1)2)(-1)2+(1)3-(-1)2
Step 1.7.5
Simplify the numerator.
Tap for more steps...
Step 1.7.5.1
Raise -1 to the power of 3.
-1(2-1-12)(-1)2+13-(-1)2
Step 1.7.5.2
One to any power is one.
-1(2-1-11)(-1)2+13-(-1)2
Step 1.7.5.3
Multiply -1 by 1.
-1(2-1-1)(-1)2+13-(-1)2
Step 1.7.5.4
Subtract 1 from 2.
-1(1-1)(-1)2+13-(-1)2
Step 1.7.5.5
Subtract 1 from 1.
-10(-1)2+13-(-1)2
-10(-1)2+13-(-1)2
Step 1.7.6
Simplify the denominator.
Tap for more steps...
Step 1.7.6.1
Raise -1 to the power of 2.
-101+13-(-1)2
Step 1.7.6.2
One to any power is one.
-101+1-(-1)2
Step 1.7.6.3
Multiply -1 by (-1)2 by adding the exponents.
Tap for more steps...
Step 1.7.6.3.1
Multiply -1 by (-1)2.
Tap for more steps...
Step 1.7.6.3.1.1
Raise -1 to the power of 1.
-101+1+(-1)1(-1)2
Step 1.7.6.3.1.2
Use the power rule aman=am+n to combine exponents.
-101+1+(-1)1+2
-101+1+(-1)1+2
Step 1.7.6.3.2
Add 1 and 2.
-101+1+(-1)3
-101+1+(-1)3
Step 1.7.6.4
Raise -1 to the power of 3.
-101+1-1
Step 1.7.6.5
Add 1 and 1.
-102-1
Step 1.7.6.6
Subtract 1 from 2.
-101
-101
Step 1.7.7
Simplify the expression.
Tap for more steps...
Step 1.7.7.1
Multiply -1 by 0.
01
Step 1.7.7.2
Divide 0 by 1.
0
0
0
0
Step 2
Plug the slope and point values into the point-slope formula and solve for y.
Tap for more steps...
Step 2.1
Use the slope 0 and a given point (-1,1) to substitute for x1 and y1 in the point-slope form y-y1=m(x-x1), which is derived from the slope equation m=y2-y1x2-x1.
y-(1)=0(x-(-1))
Step 2.2
Simplify the equation and keep it in point-slope form.
y-1=0(x+1)
Step 2.3
Solve for y.
Tap for more steps...
Step 2.3.1
Multiply 0 by x+1.
y-1=0
Step 2.3.2
Add 1 to both sides of the equation.
y=1
y=1
y=1
Step 3
 [x2  12  π  xdx ]