Calculus Examples

Find the Tangent Line at (4,5/2) f(x)=x^(1/2)+2x^-1 at the point (4,5/2)
f(x)=x12+2x-1f(x)=x12+2x1 at the point (4,52)(4,52)
Step 1
Find the first derivative and evaluate at x=4x=4 and y=52y=52 to find the slope of the tangent line.
Tap for more steps...
Step 1.1
By the Sum Rule, the derivative of x12+2x-1x12+2x1 with respect to xx is ddx[x12]+ddx[2x-1]ddx[x12]+ddx[2x1].
ddx[x12]+ddx[2x-1]ddx[x12]+ddx[2x1]
Step 1.2
Evaluate ddx[x12]ddx[x12].
Tap for more steps...
Step 1.2.1
Differentiate using the Power Rule which states that ddx[xn]ddx[xn] is nxn-1nxn1 where n=12n=12.
12x12-1+ddx[2x-1]12x121+ddx[2x1]
Step 1.2.2
To write -11 as a fraction with a common denominator, multiply by 2222.
12x12-122+ddx[2x-1]12x12122+ddx[2x1]
Step 1.2.3
Combine -11 and 2222.
12x12+-122+ddx[2x-1]12x12+122+ddx[2x1]
Step 1.2.4
Combine the numerators over the common denominator.
12x1-122+ddx[2x-1]12x1122+ddx[2x1]
Step 1.2.5
Simplify the numerator.
Tap for more steps...
Step 1.2.5.1
Multiply -11 by 22.
12x1-22+ddx[2x-1]12x122+ddx[2x1]
Step 1.2.5.2
Subtract 22 from 11.
12x-12+ddx[2x-1]12x12+ddx[2x1]
12x-12+ddx[2x-1]12x12+ddx[2x1]
Step 1.2.6
Move the negative in front of the fraction.
12x-12+ddx[2x-1]12x12+ddx[2x1]
12x-12+ddx[2x-1]12x12+ddx[2x1]
Step 1.3
Evaluate ddx[2x-1]ddx[2x1].
Tap for more steps...
Step 1.3.1
Since 22 is constant with respect to xx, the derivative of 2x-12x1 with respect to xx is 2ddx[x-1]2ddx[x1].
12x-12+2ddx[x-1]12x12+2ddx[x1]
Step 1.3.2
Differentiate using the Power Rule which states that ddx[xn]ddx[xn] is nxn-1nxn1 where n=-1n=1.
12x-12+2(-x-2)12x12+2(x2)
Step 1.3.3
Multiply -11 by 22.
12x-12-2x-212x122x2
12x-12-2x-212x122x2
Step 1.4
Simplify.
Tap for more steps...
Step 1.4.1
Rewrite the expression using the negative exponent rule b-n=1bnbn=1bn.
121x12-2x-2121x122x2
Step 1.4.2
Rewrite the expression using the negative exponent rule b-n=1bnbn=1bn.
121x12-21x2121x1221x2
Step 1.4.3
Combine terms.
Tap for more steps...
Step 1.4.3.1
Multiply 1212 by 1x121x12.
12x12-21x212x1221x2
Step 1.4.3.2
Combine -22 and 1x21x2.
12x12+-2x212x12+2x2
Step 1.4.3.3
Move the negative in front of the fraction.
12x12-2x212x122x2
12x12-2x212x122x2
Step 1.4.4
Reorder terms.
-2x2+12x122x2+12x12
-2x2+12x122x2+12x12
Step 1.5
Evaluate the derivative at x=4x=4.
-2(4)2+12(4)122(4)2+12(4)12
Step 1.6
Simplify.
Tap for more steps...
Step 1.6.1
Simplify each term.
Tap for more steps...
Step 1.6.1.1
Raise 44 to the power of 22.
-216+12(4)12216+12(4)12
Step 1.6.1.2
Cancel the common factor of 22 and 1616.
Tap for more steps...
Step 1.6.1.2.1
Factor 22 out of 22.
-2(1)16+12(4)122(1)16+12(4)12
Step 1.6.1.2.2
Cancel the common factors.
Tap for more steps...
Step 1.6.1.2.2.1
Factor 22 out of 1616.
-2128+12(4)122128+12(4)12
Step 1.6.1.2.2.2
Cancel the common factor.
-2128+12(4)12
Step 1.6.1.2.2.3
Rewrite the expression.
-18+12(4)12
-18+12(4)12
-18+12(4)12
Step 1.6.1.3
Simplify the denominator.
Tap for more steps...
Step 1.6.1.3.1
Rewrite 4 as 22.
-18+12(22)12
Step 1.6.1.3.2
Multiply the exponents in (22)12.
Tap for more steps...
Step 1.6.1.3.2.1
Apply the power rule and multiply exponents, (am)n=amn.
-18+1222(12)
Step 1.6.1.3.2.2
Cancel the common factor of 2.
Tap for more steps...
Step 1.6.1.3.2.2.1
Cancel the common factor.
-18+1222(12)
Step 1.6.1.3.2.2.2
Rewrite the expression.
-18+1221
-18+1221
-18+1221
Step 1.6.1.3.3
Use the power rule aman=am+n to combine exponents.
-18+121+1
Step 1.6.1.3.4
Add 1 and 1.
-18+122
-18+122
Step 1.6.1.4
Raise 2 to the power of 2.
-18+14
-18+14
Step 1.6.2
To write 14 as a fraction with a common denominator, multiply by 22.
-18+1422
Step 1.6.3
Write each expression with a common denominator of 8, by multiplying each by an appropriate factor of 1.
Tap for more steps...
Step 1.6.3.1
Multiply 14 by 22.
-18+242
Step 1.6.3.2
Multiply 4 by 2.
-18+28
-18+28
Step 1.6.4
Combine the numerators over the common denominator.
-1+28
Step 1.6.5
Add -1 and 2.
18
18
18
Step 2
Plug the slope and point values into the point-slope formula and solve for y.
Tap for more steps...
Step 2.1
Use the slope 18 and a given point (4,52) to substitute for x1 and y1 in the point-slope form y-y1=m(x-x1), which is derived from the slope equation m=y2-y1x2-x1.
y-(52)=18(x-(4))
Step 2.2
Simplify the equation and keep it in point-slope form.
y-52=18(x-4)
Step 2.3
Solve for y.
Tap for more steps...
Step 2.3.1
Simplify 18(x-4).
Tap for more steps...
Step 2.3.1.1
Rewrite.
y-52=0+0+18(x-4)
Step 2.3.1.2
Simplify by adding zeros.
y-52=18(x-4)
Step 2.3.1.3
Apply the distributive property.
y-52=18x+18-4
Step 2.3.1.4
Combine 18 and x.
y-52=x8+18-4
Step 2.3.1.5
Cancel the common factor of 4.
Tap for more steps...
Step 2.3.1.5.1
Factor 4 out of 8.
y-52=x8+14(2)-4
Step 2.3.1.5.2
Factor 4 out of -4.
y-52=x8+142(4-1)
Step 2.3.1.5.3
Cancel the common factor.
y-52=x8+142(4-1)
Step 2.3.1.5.4
Rewrite the expression.
y-52=x8+12-1
y-52=x8+12-1
Step 2.3.1.6
Combine 12 and -1.
y-52=x8+-12
Step 2.3.1.7
Move the negative in front of the fraction.
y-52=x8-12
y-52=x8-12
Step 2.3.2
Move all terms not containing y to the right side of the equation.
Tap for more steps...
Step 2.3.2.1
Add 52 to both sides of the equation.
y=x8-12+52
Step 2.3.2.2
Combine the numerators over the common denominator.
y=x8+-1+52
Step 2.3.2.3
Add -1 and 5.
y=x8+42
Step 2.3.2.4
Divide 4 by 2.
y=x8+2
y=x8+2
Step 2.3.3
Reorder terms.
y=18x+2
y=18x+2
y=18x+2
Step 3
 [x2  12  π  xdx ]