Enter a problem...
Calculus Examples
y=√1-3xy=√1−3x , (-1,2)
Step 1
Step 1.1
Use n√ax=axn to rewrite √1-3x as (1-3x)12.
ddx[(1-3x)12]
Step 1.2
Differentiate using the chain rule, which states that ddx[f(g(x))] is f′(g(x))g′(x) where f(x)=x12 and g(x)=1-3x.
Step 1.2.1
To apply the Chain Rule, set u as 1-3x.
ddu[u12]ddx[1-3x]
Step 1.2.2
Differentiate using the Power Rule which states that ddu[un] is nun-1 where n=12.
12u12-1ddx[1-3x]
Step 1.2.3
Replace all occurrences of u with 1-3x.
12(1-3x)12-1ddx[1-3x]
12(1-3x)12-1ddx[1-3x]
Step 1.3
To write -1 as a fraction with a common denominator, multiply by 22.
12(1-3x)12-1⋅22ddx[1-3x]
Step 1.4
Combine -1 and 22.
12(1-3x)12+-1⋅22ddx[1-3x]
Step 1.5
Combine the numerators over the common denominator.
12(1-3x)1-1⋅22ddx[1-3x]
Step 1.6
Simplify the numerator.
Step 1.6.1
Multiply -1 by 2.
12(1-3x)1-22ddx[1-3x]
Step 1.6.2
Subtract 2 from 1.
12(1-3x)-12ddx[1-3x]
12(1-3x)-12ddx[1-3x]
Step 1.7
Combine fractions.
Step 1.7.1
Move the negative in front of the fraction.
12(1-3x)-12ddx[1-3x]
Step 1.7.2
Combine 12 and (1-3x)-12.
(1-3x)-122ddx[1-3x]
Step 1.7.3
Move (1-3x)-12 to the denominator using the negative exponent rule b-n=1bn.
12(1-3x)12ddx[1-3x]
12(1-3x)12ddx[1-3x]
Step 1.8
By the Sum Rule, the derivative of 1-3x with respect to x is ddx[1]+ddx[-3x].
12(1-3x)12(ddx[1]+ddx[-3x])
Step 1.9
Since 1 is constant with respect to x, the derivative of 1 with respect to x is 0.
12(1-3x)12(0+ddx[-3x])
Step 1.10
Add 0 and ddx[-3x].
12(1-3x)12ddx[-3x]
Step 1.11
Since -3 is constant with respect to x, the derivative of -3x with respect to x is -3ddx[x].
12(1-3x)12(-3ddx[x])
Step 1.12
Combine fractions.
Step 1.12.1
Combine -3 and 12(1-3x)12.
-32(1-3x)12ddx[x]
Step 1.12.2
Move the negative in front of the fraction.
-32(1-3x)12ddx[x]
-32(1-3x)12ddx[x]
Step 1.13
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=1.
-32(1-3x)12⋅1
Step 1.14
Multiply -1 by 1.
-32(1-3x)12
Step 1.15
Evaluate the derivative at x=-1.
-32(1-3⋅-1)12
Step 1.16
Simplify.
Step 1.16.1
Simplify the denominator.
Step 1.16.1.1
Multiply -3 by -1.
-32(1+3)12
Step 1.16.1.2
Add 1 and 3.
-32⋅412
Step 1.16.1.3
Rewrite 4 as 22.
-32⋅(22)12
Step 1.16.1.4
Apply the power rule and multiply exponents, (am)n=amn.
-32⋅22(12)
Step 1.16.1.5
Cancel the common factor of 2.
Step 1.16.1.5.1
Cancel the common factor.
-32⋅22(12)
Step 1.16.1.5.2
Rewrite the expression.
-32⋅21
-32⋅21
Step 1.16.1.6
Evaluate the exponent.
-32⋅2
-32⋅2
Step 1.16.2
Multiply 2 by 2.
-34
-34
-34
Step 2
Step 2.1
Use the slope -34 and a given point (-1,2) to substitute for x1 and y1 in the point-slope form y-y1=m(x-x1), which is derived from the slope equation m=y2-y1x2-x1.
y-(2)=-34⋅(x-(-1))
Step 2.2
Simplify the equation and keep it in point-slope form.
y-2=-34⋅(x+1)
Step 2.3
Solve for y.
Step 2.3.1
Simplify -34⋅(x+1).
Step 2.3.1.1
Rewrite.
y-2=0+0-34⋅(x+1)
Step 2.3.1.2
Simplify terms.
Step 2.3.1.2.1
Apply the distributive property.
y-2=-34x-34⋅1
Step 2.3.1.2.2
Combine x and 34.
y-2=-x⋅34-34⋅1
Step 2.3.1.2.3
Multiply -1 by 1.
y-2=-x⋅34-34
y-2=-x⋅34-34
Step 2.3.1.3
Move 3 to the left of x.
y-2=-3x4-34
y-2=-3x4-34
Step 2.3.2
Move all terms not containing y to the right side of the equation.
Step 2.3.2.1
Add 2 to both sides of the equation.
y=-3x4-34+2
Step 2.3.2.2
To write 2 as a fraction with a common denominator, multiply by 44.
y=-3x4-34+2⋅44
Step 2.3.2.3
Combine 2 and 44.
y=-3x4-34+2⋅44
Step 2.3.2.4
Combine the numerators over the common denominator.
y=-3x4+-3+2⋅44
Step 2.3.2.5
Simplify the numerator.
Step 2.3.2.5.1
Multiply 2 by 4.
y=-3x4+-3+84
Step 2.3.2.5.2
Add -3 and 8.
y=-3x4+54
y=-3x4+54
y=-3x4+54
Step 2.3.3
Write in y=mx+b form.
Step 2.3.3.1
Reorder terms.
y=-(34x)+54
Step 2.3.3.2
Remove parentheses.
y=-34x+54
y=-34x+54
y=-34x+54
y=-34x+54
Step 3