Calculus Examples

Find the Tangent Line at (-9,-1/3) f(x)=3/x at (-9,-1/3)
f(x)=3xf(x)=3x at (-9,-13)(9,13)
Step 1
Find the first derivative and evaluate at x=-9x=9 and y=-13y=13 to find the slope of the tangent line.
Tap for more steps...
Step 1.1
Since 33 is constant with respect to xx, the derivative of 3x3x with respect to xx is 3ddx[1x]3ddx[1x].
3ddx[1x]3ddx[1x]
Step 1.2
Rewrite 1x1x as x-1x1.
3ddx[x-1]3ddx[x1]
Step 1.3
Differentiate using the Power Rule which states that ddx[xn]ddx[xn] is nxn-1nxn1 where n=-1n=1.
3(-x-2)3(x2)
Step 1.4
Multiply -11 by 33.
-3x-23x2
Step 1.5
Simplify.
Tap for more steps...
Step 1.5.1
Rewrite the expression using the negative exponent rule b-n=1bnbn=1bn.
-31x231x2
Step 1.5.2
Combine terms.
Tap for more steps...
Step 1.5.2.1
Combine -33 and 1x21x2.
-3x23x2
Step 1.5.2.2
Move the negative in front of the fraction.
-3x23x2
-3x23x2
-3x23x2
Step 1.6
Evaluate the derivative at x=-9x=9.
-3(-9)23(9)2
Step 1.7
Simplify.
Tap for more steps...
Step 1.7.1
Raise -99 to the power of 22.
-381381
Step 1.7.2
Cancel the common factor of 33 and 8181.
Tap for more steps...
Step 1.7.2.1
Factor 33 out of 33.
-3(1)813(1)81
Step 1.7.2.2
Cancel the common factors.
Tap for more steps...
Step 1.7.2.2.1
Factor 33 out of 8181.
-3132731327
Step 1.7.2.2.2
Cancel the common factor.
-31327
Step 1.7.2.2.3
Rewrite the expression.
-127
-127
-127
-127
-127
Step 2
Plug the slope and point values into the point-slope formula and solve for y.
Tap for more steps...
Step 2.1
Use the slope -127 and a given point (-9,-13) to substitute for x1 and y1 in the point-slope form y-y1=m(x-x1), which is derived from the slope equation m=y2-y1x2-x1.
y-(-13)=-127(x-(-9))
Step 2.2
Simplify the equation and keep it in point-slope form.
y+13=-127(x+9)
Step 2.3
Solve for y.
Tap for more steps...
Step 2.3.1
Simplify -127(x+9).
Tap for more steps...
Step 2.3.1.1
Rewrite.
y+13=0+0-127(x+9)
Step 2.3.1.2
Simplify by adding zeros.
y+13=-127(x+9)
Step 2.3.1.3
Apply the distributive property.
y+13=-127x-1279
Step 2.3.1.4
Combine x and 127.
y+13=-x27-1279
Step 2.3.1.5
Cancel the common factor of 9.
Tap for more steps...
Step 2.3.1.5.1
Move the leading negative in -127 into the numerator.
y+13=-x27+-1279
Step 2.3.1.5.2
Factor 9 out of 27.
y+13=-x27+-19(3)9
Step 2.3.1.5.3
Cancel the common factor.
y+13=-x27+-1939
Step 2.3.1.5.4
Rewrite the expression.
y+13=-x27+-13
y+13=-x27+-13
Step 2.3.1.6
Move the negative in front of the fraction.
y+13=-x27-13
y+13=-x27-13
Step 2.3.2
Move all terms not containing y to the right side of the equation.
Tap for more steps...
Step 2.3.2.1
Subtract 13 from both sides of the equation.
y=-x27-13-13
Step 2.3.2.2
Combine the numerators over the common denominator.
y=-x27+-1-13
Step 2.3.2.3
Subtract 1 from -1.
y=-x27+-23
Step 2.3.2.4
Simplify each term.
Tap for more steps...
Step 2.3.2.4.1
Move the negative in front of the fraction.
y=-x27+-23
Step 2.3.2.4.2
Move the negative in front of the fraction.
y=-x27-23
y=-x27-23
y=-x27-23
Step 2.3.3
Write in y=mx+b form.
Tap for more steps...
Step 2.3.3.1
Reorder terms.
y=-(127x)-23
Step 2.3.3.2
Remove parentheses.
y=-127x-23
y=-127x-23
y=-127x-23
y=-127x-23
Step 3
 [x2  12  π  xdx ]