Enter a problem...
Calculus Examples
f(x)=3xf(x)=3x at (-9,-13)(−9,−13)
Step 1
Step 1.1
Since 33 is constant with respect to xx, the derivative of 3x3x with respect to xx is 3ddx[1x]3ddx[1x].
3ddx[1x]3ddx[1x]
Step 1.2
Rewrite 1x1x as x-1x−1.
3ddx[x-1]3ddx[x−1]
Step 1.3
Differentiate using the Power Rule which states that ddx[xn]ddx[xn] is nxn-1nxn−1 where n=-1n=−1.
3(-x-2)3(−x−2)
Step 1.4
Multiply -1−1 by 33.
-3x-2−3x−2
Step 1.5
Simplify.
Step 1.5.1
Rewrite the expression using the negative exponent rule b-n=1bnb−n=1bn.
-31x2−31x2
Step 1.5.2
Combine terms.
Step 1.5.2.1
Combine -3−3 and 1x21x2.
-3x2−3x2
Step 1.5.2.2
Move the negative in front of the fraction.
-3x2−3x2
-3x2−3x2
-3x2−3x2
Step 1.6
Evaluate the derivative at x=-9x=−9.
-3(-9)2−3(−9)2
Step 1.7
Simplify.
Step 1.7.1
Raise -9−9 to the power of 22.
-381−381
Step 1.7.2
Cancel the common factor of 33 and 8181.
Step 1.7.2.1
Factor 33 out of 33.
-3(1)81−3(1)81
Step 1.7.2.2
Cancel the common factors.
Step 1.7.2.2.1
Factor 33 out of 8181.
-3⋅13⋅27−3⋅13⋅27
Step 1.7.2.2.2
Cancel the common factor.
-3⋅13⋅27
Step 1.7.2.2.3
Rewrite the expression.
-127
-127
-127
-127
-127
Step 2
Step 2.1
Use the slope -127 and a given point (-9,-13) to substitute for x1 and y1 in the point-slope form y-y1=m(x-x1), which is derived from the slope equation m=y2-y1x2-x1.
y-(-13)=-127⋅(x-(-9))
Step 2.2
Simplify the equation and keep it in point-slope form.
y+13=-127⋅(x+9)
Step 2.3
Solve for y.
Step 2.3.1
Simplify -127⋅(x+9).
Step 2.3.1.1
Rewrite.
y+13=0+0-127⋅(x+9)
Step 2.3.1.2
Simplify by adding zeros.
y+13=-127⋅(x+9)
Step 2.3.1.3
Apply the distributive property.
y+13=-127x-127⋅9
Step 2.3.1.4
Combine x and 127.
y+13=-x27-127⋅9
Step 2.3.1.5
Cancel the common factor of 9.
Step 2.3.1.5.1
Move the leading negative in -127 into the numerator.
y+13=-x27+-127⋅9
Step 2.3.1.5.2
Factor 9 out of 27.
y+13=-x27+-19(3)⋅9
Step 2.3.1.5.3
Cancel the common factor.
y+13=-x27+-19⋅3⋅9
Step 2.3.1.5.4
Rewrite the expression.
y+13=-x27+-13
y+13=-x27+-13
Step 2.3.1.6
Move the negative in front of the fraction.
y+13=-x27-13
y+13=-x27-13
Step 2.3.2
Move all terms not containing y to the right side of the equation.
Step 2.3.2.1
Subtract 13 from both sides of the equation.
y=-x27-13-13
Step 2.3.2.2
Combine the numerators over the common denominator.
y=-x27+-1-13
Step 2.3.2.3
Subtract 1 from -1.
y=-x27+-23
Step 2.3.2.4
Simplify each term.
Step 2.3.2.4.1
Move the negative in front of the fraction.
y=-x27+-23
Step 2.3.2.4.2
Move the negative in front of the fraction.
y=-x27-23
y=-x27-23
y=-x27-23
Step 2.3.3
Write in y=mx+b form.
Step 2.3.3.1
Reorder terms.
y=-(127x)-23
Step 2.3.3.2
Remove parentheses.
y=-127x-23
y=-127x-23
y=-127x-23
y=-127x-23
Step 3