Enter a problem...
Calculus Examples
f(x)=3x2+2xf(x)=3x2+2x , (-1,1)(−1,1)
Step 1
Step 1.1
By the Sum Rule, the derivative of 3x2+2x3x2+2x with respect to xx is ddx[3x2]+ddx[2x]ddx[3x2]+ddx[2x].
ddx[3x2]+ddx[2x]ddx[3x2]+ddx[2x]
Step 1.2
Evaluate ddx[3x2]ddx[3x2].
Step 1.2.1
Since 33 is constant with respect to xx, the derivative of 3x23x2 with respect to xx is 3ddx[x2]3ddx[x2].
3ddx[x2]+ddx[2x]3ddx[x2]+ddx[2x]
Step 1.2.2
Differentiate using the Power Rule which states that ddx[xn]ddx[xn] is nxn-1nxn−1 where n=2n=2.
3(2x)+ddx[2x]3(2x)+ddx[2x]
Step 1.2.3
Multiply 22 by 33.
6x+ddx[2x]6x+ddx[2x]
6x+ddx[2x]6x+ddx[2x]
Step 1.3
Evaluate ddx[2x]ddx[2x].
Step 1.3.1
Since 22 is constant with respect to xx, the derivative of 2x2x with respect to xx is 2ddx[x]2ddx[x].
6x+2ddx[x]6x+2ddx[x]
Step 1.3.2
Differentiate using the Power Rule which states that ddx[xn]ddx[xn] is nxn-1nxn−1 where n=1n=1.
6x+2⋅16x+2⋅1
Step 1.3.3
Multiply 22 by 11.
6x+26x+2
6x+26x+2
Step 1.4
Evaluate the derivative at x=-1x=−1.
6(-1)+26(−1)+2
Step 1.5
Simplify.
Step 1.5.1
Multiply 66 by -1−1.
-6+2−6+2
Step 1.5.2
Add -6−6 and 22.
-4−4
-4−4
-4−4
Step 2
Step 2.1
Use the slope -4−4 and a given point (-1,1)(−1,1) to substitute for x1x1 and y1y1 in the point-slope form y-y1=m(x-x1)y−y1=m(x−x1), which is derived from the slope equation m=y2-y1x2-x1m=y2−y1x2−x1.
y-(1)=-4⋅(x-(-1))y−(1)=−4⋅(x−(−1))
Step 2.2
Simplify the equation and keep it in point-slope form.
y-1=-4⋅(x+1)y−1=−4⋅(x+1)
Step 2.3
Solve for yy.
Step 2.3.1
Simplify -4⋅(x+1)−4⋅(x+1).
Step 2.3.1.1
Rewrite.
y-1=0+0-4⋅(x+1)y−1=0+0−4⋅(x+1)
Step 2.3.1.2
Simplify by adding zeros.
y-1=-4⋅(x+1)y−1=−4⋅(x+1)
Step 2.3.1.3
Apply the distributive property.
y-1=-4x-4⋅1y−1=−4x−4⋅1
Step 2.3.1.4
Multiply -4−4 by 11.
y-1=-4x-4y−1=−4x−4
y-1=-4x-4y−1=−4x−4
Step 2.3.2
Move all terms not containing yy to the right side of the equation.
Step 2.3.2.1
Add 11 to both sides of the equation.
y=-4x-4+1y=−4x−4+1
Step 2.3.2.2
Add -4−4 and 11.
y=-4x-3y=−4x−3
y=-4x-3y=−4x−3
y=-4x-3y=−4x−3
y=-4x-3y=−4x−3
Step 3