Enter a problem...
Calculus Examples
f(x)=12xln(x4)f(x)=12xln(x4) , (-1,0)
Step 1
Step 1.1
Differentiate using the Constant Multiple Rule.
Step 1.1.1
Combine x and 12.
ddx[x2⋅ln(x4)]
Step 1.1.2
Combine x2 and ln(x4).
ddx[xln(x4)2]
Step 1.1.3
Since 12 is constant with respect to x, the derivative of xln(x4)2 with respect to x is 12ddx[xln(x4)].
12ddx[xln(x4)]
12ddx[xln(x4)]
Step 1.2
Differentiate using the Product Rule which states that ddx[f(x)g(x)] is f(x)ddx[g(x)]+g(x)ddx[f(x)] where f(x)=x and g(x)=ln(x4).
12(xddx[ln(x4)]+ln(x4)ddx[x])
Step 1.3
Differentiate using the chain rule, which states that ddx[f(g(x))] is f′(g(x))g′(x) where f(x)=ln(x) and g(x)=x4.
Step 1.3.1
To apply the Chain Rule, set u as x4.
12(x(ddu[ln(u)]ddx[x4])+ln(x4)ddx[x])
Step 1.3.2
The derivative of ln(u) with respect to u is 1u.
12(x(1uddx[x4])+ln(x4)ddx[x])
Step 1.3.3
Replace all occurrences of u with x4.
12(x(1x4ddx[x4])+ln(x4)ddx[x])
12(x(1x4ddx[x4])+ln(x4)ddx[x])
Step 1.4
Differentiate using the Power Rule.
Step 1.4.1
Combine 1x4 and x.
12(xx4ddx[x4]+ln(x4)ddx[x])
Step 1.4.2
Cancel the common factor of x and x4.
Step 1.4.2.1
Raise x to the power of 1.
12(x1x4ddx[x4]+ln(x4)ddx[x])
Step 1.4.2.2
Factor x out of x1.
12(x⋅1x4ddx[x4]+ln(x4)ddx[x])
Step 1.4.2.3
Cancel the common factors.
Step 1.4.2.3.1
Factor x out of x4.
12(x⋅1x⋅x3ddx[x4]+ln(x4)ddx[x])
Step 1.4.2.3.2
Cancel the common factor.
12(x⋅1x⋅x3ddx[x4]+ln(x4)ddx[x])
Step 1.4.2.3.3
Rewrite the expression.
12(1x3ddx[x4]+ln(x4)ddx[x])
12(1x3ddx[x4]+ln(x4)ddx[x])
12(1x3ddx[x4]+ln(x4)ddx[x])
Step 1.4.3
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=4.
12(1x3(4x3)+ln(x4)ddx[x])
Step 1.4.4
Simplify terms.
Step 1.4.4.1
Combine 4 and 1x3.
12(4x3x3+ln(x4)ddx[x])
Step 1.4.4.2
Combine 4x3 and x3.
12(4x3x3+ln(x4)ddx[x])
Step 1.4.4.3
Cancel the common factor of x3.
Step 1.4.4.3.1
Cancel the common factor.
12(4x3x3+ln(x4)ddx[x])
Step 1.4.4.3.2
Divide 4 by 1.
12(4+ln(x4)ddx[x])
12(4+ln(x4)ddx[x])
12(4+ln(x4)ddx[x])
Step 1.4.5
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=1.
12(4+ln(x4)⋅1)
Step 1.4.6
Multiply ln(x4) by 1.
12(4+ln(x4))
12(4+ln(x4))
Step 1.5
Simplify.
Step 1.5.1
Apply the distributive property.
12⋅4+12ln(x4)
Step 1.5.2
Combine terms.
Step 1.5.2.1
Combine 12 and 4.
42+12ln(x4)
Step 1.5.2.2
Cancel the common factor of 4 and 2.
Step 1.5.2.2.1
Factor 2 out of 4.
2⋅22+12ln(x4)
Step 1.5.2.2.2
Cancel the common factors.
Step 1.5.2.2.2.1
Factor 2 out of 2.
2⋅22(1)+12ln(x4)
Step 1.5.2.2.2.2
Cancel the common factor.
2⋅22⋅1+12ln(x4)
Step 1.5.2.2.2.3
Rewrite the expression.
21+12ln(x4)
Step 1.5.2.2.2.4
Divide 2 by 1.
2+12ln(x4)
2+12ln(x4)
2+12ln(x4)
2+12ln(x4)
Step 1.5.3
Reorder terms.
12ln(x4)+2
Step 1.5.4
Simplify each term.
Step 1.5.4.1
Combine 12 and ln(x4).
ln(x4)2+2
Step 1.5.4.2
Expand ln(x4) by moving 4 outside the logarithm.
4ln(x)2+2
Step 1.5.4.3
Cancel the common factor of 4 and 2.
Step 1.5.4.3.1
Factor 2 out of 4ln(x).
2(2ln(x))2+2
Step 1.5.4.3.2
Cancel the common factors.
Step 1.5.4.3.2.1
Factor 2 out of 2.
2(2ln(x))2(1)+2
Step 1.5.4.3.2.2
Cancel the common factor.
2(2ln(x))2⋅1+2
Step 1.5.4.3.2.3
Rewrite the expression.
2ln(x)1+2
Step 1.5.4.3.2.4
Divide 2ln(x) by 1.
2ln(x)+2
2ln(x)+2
2ln(x)+2
2ln(x)+2
2ln(x)+2
Step 1.6
Evaluate the derivative at x=-1.
2ln(-1)+2
Step 1.7
The natural logarithm of a negative number is undefined.
Undefined
Undefined
Step 2
The slope of the line is undefined, which means that it is perpendicular to the x-axis at x=-1.
x=-1
Step 3