Calculus Examples

Find the Tangent Line at (0,3) g(x)=3e^(-5x) at the point (0,3)
at the point
Step 1
Find the first derivative and evaluate at and to find the slope of the tangent line.
Tap for more steps...
Step 1.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.2
Differentiate using the chain rule, which states that is where and .
Tap for more steps...
Step 1.2.1
To apply the Chain Rule, set as .
Step 1.2.2
Differentiate using the Exponential Rule which states that is where =.
Step 1.2.3
Replace all occurrences of with .
Step 1.3
Differentiate.
Tap for more steps...
Step 1.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.3.2
Multiply by .
Step 1.3.3
Differentiate using the Power Rule which states that is where .
Step 1.3.4
Multiply by .
Step 1.4
Evaluate the derivative at .
Step 1.5
Simplify.
Tap for more steps...
Step 1.5.1
Multiply by .
Step 1.5.2
Anything raised to is .
Step 1.5.3
Multiply by .
Step 2
Plug the slope and point values into the point-slope formula and solve for .
Tap for more steps...
Step 2.1
Use the slope and a given point to substitute for and in the point-slope form , which is derived from the slope equation .
Step 2.2
Simplify the equation and keep it in point-slope form.
Step 2.3
Solve for .
Tap for more steps...
Step 2.3.1
Add and .
Step 2.3.2
Add to both sides of the equation.
Step 3