Calculus Examples

Find the Tangent Line at (3,1) 2(x^2+y^2)^2=25(x^2-y^2) at (3,1)
2(x2+y2)2=25(x2-y2)2(x2+y2)2=25(x2y2) at (3,1)
Step 1
Find the first derivative and evaluate at x=3 and y=1 to find the slope of the tangent line.
Tap for more steps...
Step 1.1
Differentiate both sides of the equation.
ddx(2(x2+y2)2)=ddx(25(x2-y2))
Step 1.2
Differentiate the left side of the equation.
Tap for more steps...
Step 1.2.1
Since 2 is constant with respect to x, the derivative of 2(x2+y2)2 with respect to x is 2ddx[(x2+y2)2].
2ddx[(x2+y2)2]
Step 1.2.2
Differentiate using the chain rule, which states that ddx[f(g(x))] is f(g(x))g(x) where f(x)=x2 and g(x)=x2+y2.
Tap for more steps...
Step 1.2.2.1
To apply the Chain Rule, set u1 as x2+y2.
2(ddu1[u12]ddx[x2+y2])
Step 1.2.2.2
Differentiate using the Power Rule which states that ddu1[u1n] is nu1n-1 where n=2.
2(2u1ddx[x2+y2])
Step 1.2.2.3
Replace all occurrences of u1 with x2+y2.
2(2(x2+y2)ddx[x2+y2])
2(2(x2+y2)ddx[x2+y2])
Step 1.2.3
Differentiate.
Tap for more steps...
Step 1.2.3.1
Multiply 2 by 2.
4((x2+y2)ddx[x2+y2])
Step 1.2.3.2
By the Sum Rule, the derivative of x2+y2 with respect to x is ddx[x2]+ddx[y2].
4(x2+y2)(ddx[x2]+ddx[y2])
Step 1.2.3.3
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=2.
4(x2+y2)(2x+ddx[y2])
4(x2+y2)(2x+ddx[y2])
Step 1.2.4
Differentiate using the chain rule, which states that ddx[f(g(x))] is f(g(x))g(x) where f(x)=x2 and g(x)=y.
Tap for more steps...
Step 1.2.4.1
To apply the Chain Rule, set u2 as y.
4(x2+y2)(2x+ddu2[u22]ddx[y])
Step 1.2.4.2
Differentiate using the Power Rule which states that ddu2[u2n] is nu2n-1 where n=2.
4(x2+y2)(2x+2u2ddx[y])
Step 1.2.4.3
Replace all occurrences of u2 with y.
4(x2+y2)(2x+2yddx[y])
4(x2+y2)(2x+2yddx[y])
Step 1.2.5
Rewrite ddx[y] as y.
4(x2+y2)(2x+2yy)
Step 1.2.6
Simplify.
Tap for more steps...
Step 1.2.6.1
Apply the distributive property.
(4x2+4y2)(2x+2yy)
Step 1.2.6.2
Reorder the factors of (4x2+4y2)(2x+2yy).
(2x+2yy)(4x2+4y2)
(2x+2yy)(4x2+4y2)
(2x+2yy)(4x2+4y2)
Step 1.3
Differentiate the right side of the equation.
Tap for more steps...
Step 1.3.1
Differentiate.
Tap for more steps...
Step 1.3.1.1
Since 25 is constant with respect to x, the derivative of 25(x2-y2) with respect to x is 25ddx[x2-y2].
25ddx[x2-y2]
Step 1.3.1.2
By the Sum Rule, the derivative of x2-y2 with respect to x is ddx[x2]+ddx[-y2].
25(ddx[x2]+ddx[-y2])
Step 1.3.1.3
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=2.
25(2x+ddx[-y2])
Step 1.3.1.4
Since -1 is constant with respect to x, the derivative of -y2 with respect to x is -ddx[y2].
25(2x-ddx[y2])
25(2x-ddx[y2])
Step 1.3.2
Differentiate using the chain rule, which states that ddx[f(g(x))] is f(g(x))g(x) where f(x)=x2 and g(x)=y.
Tap for more steps...
Step 1.3.2.1
To apply the Chain Rule, set u as y.
25(2x-(ddu[u2]ddx[y]))
Step 1.3.2.2
Differentiate using the Power Rule which states that ddu[un] is nun-1 where n=2.
25(2x-(2uddx[y]))
Step 1.3.2.3
Replace all occurrences of u with y.
25(2x-(2yddx[y]))
25(2x-(2yddx[y]))
Step 1.3.3
Multiply 2 by -1.
25(2x-2(yddx[y]))
Step 1.3.4
Rewrite ddx[y] as y.
25(2x-2yy)
Step 1.3.5
Simplify.
Tap for more steps...
Step 1.3.5.1
Apply the distributive property.
25(2x)+25(-2yy)
Step 1.3.5.2
Combine terms.
Tap for more steps...
Step 1.3.5.2.1
Multiply 2 by 25.
50x+25(-2yy)
Step 1.3.5.2.2
Multiply -2 by 25.
50x-50yy
50x-50yy
Step 1.3.5.3
Reorder terms.
-50yy+50x
-50yy+50x
-50yy+50x
Step 1.4
Reform the equation by setting the left side equal to the right side.
(2x+2yy)(4x2+4y2)=-50yy+50x
Step 1.5
Solve for y.
Tap for more steps...
Step 1.5.1
Simplify (2x+2yy)(4x2+4y2).
Tap for more steps...
Step 1.5.1.1
Rewrite.
0+0+(2x+2yy)(4x2+4y2)=-50yy+50x
Step 1.5.1.2
Simplify by adding zeros.
(2x+2yy)(4x2+4y2)=-50yy+50x
Step 1.5.1.3
Expand (2x+2yy)(4x2+4y2) using the FOIL Method.
Tap for more steps...
Step 1.5.1.3.1
Apply the distributive property.
2x(4x2+4y2)+2yy(4x2+4y2)=-50yy+50x
Step 1.5.1.3.2
Apply the distributive property.
2x(4x2)+2x(4y2)+2yy(4x2+4y2)=-50yy+50x
Step 1.5.1.3.3
Apply the distributive property.
2x(4x2)+2x(4y2)+2yy(4x2)+2yy(4y2)=-50yy+50x
2x(4x2)+2x(4y2)+2yy(4x2)+2yy(4y2)=-50yy+50x
Step 1.5.1.4
Simplify each term.
Tap for more steps...
Step 1.5.1.4.1
Rewrite using the commutative property of multiplication.
24xx2+2x(4y2)+2yy(4x2)+2yy(4y2)=-50yy+50x
Step 1.5.1.4.2
Multiply x by x2 by adding the exponents.
Tap for more steps...
Step 1.5.1.4.2.1
Move x2.
24(x2x)+2x(4y2)+2yy(4x2)+2yy(4y2)=-50yy+50x
Step 1.5.1.4.2.2
Multiply x2 by x.
Tap for more steps...
Step 1.5.1.4.2.2.1
Raise x to the power of 1.
24(x2x1)+2x(4y2)+2yy(4x2)+2yy(4y2)=-50yy+50x
Step 1.5.1.4.2.2.2
Use the power rule aman=am+n to combine exponents.
24x2+1+2x(4y2)+2yy(4x2)+2yy(4y2)=-50yy+50x
24x2+1+2x(4y2)+2yy(4x2)+2yy(4y2)=-50yy+50x
Step 1.5.1.4.2.3
Add 2 and 1.
24x3+2x(4y2)+2yy(4x2)+2yy(4y2)=-50yy+50x
24x3+2x(4y2)+2yy(4x2)+2yy(4y2)=-50yy+50x
Step 1.5.1.4.3
Multiply 2 by 4.
8x3+2x(4y2)+2yy(4x2)+2yy(4y2)=-50yy+50x
Step 1.5.1.4.4
Rewrite using the commutative property of multiplication.
8x3+24xy2+2yy(4x2)+2yy(4y2)=-50yy+50x
Step 1.5.1.4.5
Multiply 2 by 4.
8x3+8xy2+2yy(4x2)+2yy(4y2)=-50yy+50x
Step 1.5.1.4.6
Multiply 4 by 2.
8x3+8xy2+8yyx2+2yy(4y2)=-50yy+50x
Step 1.5.1.4.7
Multiply y by y2 by adding the exponents.
Tap for more steps...
Step 1.5.1.4.7.1
Move y2.
8x3+8xy2+8yyx2+2(y2y)y4=-50yy+50x
Step 1.5.1.4.7.2
Multiply y2 by y.
Tap for more steps...
Step 1.5.1.4.7.2.1
Raise y to the power of 1.
8x3+8xy2+8yyx2+2(y2y1)y4=-50yy+50x
Step 1.5.1.4.7.2.2
Use the power rule aman=am+n to combine exponents.
8x3+8xy2+8yyx2+2y2+1y4=-50yy+50x
8x3+8xy2+8yyx2+2y2+1y4=-50yy+50x
Step 1.5.1.4.7.3
Add 2 and 1.
8x3+8xy2+8yyx2+2y3y4=-50yy+50x
8x3+8xy2+8yyx2+2y3y4=-50yy+50x
Step 1.5.1.4.8
Multiply 4 by 2.
8x3+8xy2+8yyx2+8y3y=-50yy+50x
8x3+8xy2+8yyx2+8y3y=-50yy+50x
8x3+8xy2+8yyx2+8y3y=-50yy+50x
Step 1.5.2
Add 50yy to both sides of the equation.
8x3+8xy2+8yyx2+8y3y+50yy=50x
Step 1.5.3
Move all terms not containing y to the right side of the equation.
Tap for more steps...
Step 1.5.3.1
Subtract 8x3 from both sides of the equation.
8xy2+8yyx2+8y3y+50yy=50x-8x3
Step 1.5.3.2
Subtract 8xy2 from both sides of the equation.
8yyx2+8y3y+50yy=50x-8x3-8xy2
8yyx2+8y3y+50yy=50x-8x3-8xy2
Step 1.5.4
Factor 2yy out of 8yyx2+8y3y+50yy.
Tap for more steps...
Step 1.5.4.1
Factor 2yy out of 8yyx2.
2yy(4x2)+8y3y+50yy=50x-8x3-8xy2
Step 1.5.4.2
Factor 2yy out of 8y3y.
2yy(4x2)+2yy(4y2)+50yy=50x-8x3-8xy2
Step 1.5.4.3
Factor 2yy out of 50yy.
2yy(4x2)+2yy(4y2)+2yy25=50x-8x3-8xy2
Step 1.5.4.4
Factor 2yy out of 2yy(4x2)+2yy(4y2).
2yy(4x2+4y2)+2yy25=50x-8x3-8xy2
Step 1.5.4.5
Factor 2yy out of 2yy(4x2+4y2)+2yy25.
2yy(4x2+4y2+25)=50x-8x3-8xy2
2yy(4x2+4y2+25)=50x-8x3-8xy2
Step 1.5.5
Divide each term in 2yy(4x2+4y2+25)=50x-8x3-8xy2 by 2y(4x2+4y2+25) and simplify.
Tap for more steps...
Step 1.5.5.1
Divide each term in 2yy(4x2+4y2+25)=50x-8x3-8xy2 by 2y(4x2+4y2+25).
2yy(4x2+4y2+25)2y(4x2+4y2+25)=50x2y(4x2+4y2+25)+-8x32y(4x2+4y2+25)+-8xy22y(4x2+4y2+25)
Step 1.5.5.2
Simplify the left side.
Tap for more steps...
Step 1.5.5.2.1
Cancel the common factor of 2.
Tap for more steps...
Step 1.5.5.2.1.1
Cancel the common factor.
2yy(4x2+4y2+25)2y(4x2+4y2+25)=50x2y(4x2+4y2+25)+-8x32y(4x2+4y2+25)+-8xy22y(4x2+4y2+25)
Step 1.5.5.2.1.2
Rewrite the expression.
yy(4x2+4y2+25)y(4x2+4y2+25)=50x2y(4x2+4y2+25)+-8x32y(4x2+4y2+25)+-8xy22y(4x2+4y2+25)
yy(4x2+4y2+25)y(4x2+4y2+25)=50x2y(4x2+4y2+25)+-8x32y(4x2+4y2+25)+-8xy22y(4x2+4y2+25)
Step 1.5.5.2.2
Cancel the common factor of y.
Tap for more steps...
Step 1.5.5.2.2.1
Cancel the common factor.
yy(4x2+4y2+25)y(4x2+4y2+25)=50x2y(4x2+4y2+25)+-8x32y(4x2+4y2+25)+-8xy22y(4x2+4y2+25)
Step 1.5.5.2.2.2
Rewrite the expression.
y(4x2+4y2+25)4x2+4y2+25=50x2y(4x2+4y2+25)+-8x32y(4x2+4y2+25)+-8xy22y(4x2+4y2+25)
y(4x2+4y2+25)4x2+4y2+25=50x2y(4x2+4y2+25)+-8x32y(4x2+4y2+25)+-8xy22y(4x2+4y2+25)
Step 1.5.5.2.3
Cancel the common factor of 4x2+4y2+25.
Tap for more steps...
Step 1.5.5.2.3.1
Cancel the common factor.
y(4x2+4y2+25)4x2+4y2+25=50x2y(4x2+4y2+25)+-8x32y(4x2+4y2+25)+-8xy22y(4x2+4y2+25)
Step 1.5.5.2.3.2
Divide y by 1.
y=50x2y(4x2+4y2+25)+-8x32y(4x2+4y2+25)+-8xy22y(4x2+4y2+25)
y=50x2y(4x2+4y2+25)+-8x32y(4x2+4y2+25)+-8xy22y(4x2+4y2+25)
y=50x2y(4x2+4y2+25)+-8x32y(4x2+4y2+25)+-8xy22y(4x2+4y2+25)
Step 1.5.5.3
Simplify the right side.
Tap for more steps...
Step 1.5.5.3.1
Simplify each term.
Tap for more steps...
Step 1.5.5.3.1.1
Cancel the common factor of 50 and 2.
Tap for more steps...
Step 1.5.5.3.1.1.1
Factor 2 out of 50x.
y=2(25x)2y(4x2+4y2+25)+-8x32y(4x2+4y2+25)+-8xy22y(4x2+4y2+25)
Step 1.5.5.3.1.1.2
Cancel the common factors.
Tap for more steps...
Step 1.5.5.3.1.1.2.1
Factor 2 out of 2y(4x2+4y2+25).
y=2(25x)2(y(4x2+4y2+25))+-8x32y(4x2+4y2+25)+-8xy22y(4x2+4y2+25)
Step 1.5.5.3.1.1.2.2
Cancel the common factor.
y=2(25x)2(y(4x2+4y2+25))+-8x32y(4x2+4y2+25)+-8xy22y(4x2+4y2+25)
Step 1.5.5.3.1.1.2.3
Rewrite the expression.
y=25xy(4x2+4y2+25)+-8x32y(4x2+4y2+25)+-8xy22y(4x2+4y2+25)
y=25xy(4x2+4y2+25)+-8x32y(4x2+4y2+25)+-8xy22y(4x2+4y2+25)
y=25xy(4x2+4y2+25)+-8x32y(4x2+4y2+25)+-8xy22y(4x2+4y2+25)
Step 1.5.5.3.1.2
Cancel the common factor of -8 and 2.
Tap for more steps...
Step 1.5.5.3.1.2.1
Factor 2 out of -8x3.
y=25xy(4x2+4y2+25)+2(-4x3)2y(4x2+4y2+25)+-8xy22y(4x2+4y2+25)
Step 1.5.5.3.1.2.2
Cancel the common factors.
Tap for more steps...
Step 1.5.5.3.1.2.2.1
Factor 2 out of 2y(4x2+4y2+25).
y=25xy(4x2+4y2+25)+2(-4x3)2(y(4x2+4y2+25))+-8xy22y(4x2+4y2+25)
Step 1.5.5.3.1.2.2.2
Cancel the common factor.
y=25xy(4x2+4y2+25)+2(-4x3)2(y(4x2+4y2+25))+-8xy22y(4x2+4y2+25)
Step 1.5.5.3.1.2.2.3
Rewrite the expression.
y=25xy(4x2+4y2+25)+-4x3y(4x2+4y2+25)+-8xy22y(4x2+4y2+25)
y=25xy(4x2+4y2+25)+-4x3y(4x2+4y2+25)+-8xy22y(4x2+4y2+25)
y=25xy(4x2+4y2+25)+-4x3y(4x2+4y2+25)+-8xy22y(4x2+4y2+25)
Step 1.5.5.3.1.3
Move the negative in front of the fraction.
y=25xy(4x2+4y2+25)-4x3y(4x2+4y2+25)+-8xy22y(4x2+4y2+25)
Step 1.5.5.3.1.4
Cancel the common factor of -8 and 2.
Tap for more steps...
Step 1.5.5.3.1.4.1
Factor 2 out of -8xy2.
y=25xy(4x2+4y2+25)-4x3y(4x2+4y2+25)+2(-4xy2)2y(4x2+4y2+25)
Step 1.5.5.3.1.4.2
Cancel the common factors.
Tap for more steps...
Step 1.5.5.3.1.4.2.1
Factor 2 out of 2y(4x2+4y2+25).
y=25xy(4x2+4y2+25)-4x3y(4x2+4y2+25)+2(-4xy2)2(y(4x2+4y2+25))
Step 1.5.5.3.1.4.2.2
Cancel the common factor.
y=25xy(4x2+4y2+25)-4x3y(4x2+4y2+25)+2(-4xy2)2(y(4x2+4y2+25))
Step 1.5.5.3.1.4.2.3
Rewrite the expression.
y=25xy(4x2+4y2+25)-4x3y(4x2+4y2+25)+-4xy2y(4x2+4y2+25)
y=25xy(4x2+4y2+25)-4x3y(4x2+4y2+25)+-4xy2y(4x2+4y2+25)
y=25xy(4x2+4y2+25)-4x3y(4x2+4y2+25)+-4xy2y(4x2+4y2+25)
Step 1.5.5.3.1.5
Cancel the common factor of y2 and y.
Tap for more steps...
Step 1.5.5.3.1.5.1
Factor y out of -4xy2.
y=25xy(4x2+4y2+25)-4x3y(4x2+4y2+25)+y(-4xy)y(4x2+4y2+25)
Step 1.5.5.3.1.5.2
Cancel the common factors.
Tap for more steps...
Step 1.5.5.3.1.5.2.1
Cancel the common factor.
y=25xy(4x2+4y2+25)-4x3y(4x2+4y2+25)+y(-4xy)y(4x2+4y2+25)
Step 1.5.5.3.1.5.2.2
Rewrite the expression.
y=25xy(4x2+4y2+25)-4x3y(4x2+4y2+25)+-4xy4x2+4y2+25
y=25xy(4x2+4y2+25)-4x3y(4x2+4y2+25)+-4xy4x2+4y2+25
y=25xy(4x2+4y2+25)-4x3y(4x2+4y2+25)+-4xy4x2+4y2+25
Step 1.5.5.3.1.6
Move the negative in front of the fraction.
y=25xy(4x2+4y2+25)-4x3y(4x2+4y2+25)-4xy4x2+4y2+25
y=25xy(4x2+4y2+25)-4x3y(4x2+4y2+25)-4xy4x2+4y2+25
Step 1.5.5.3.2
To write -4xy4x2+4y2+25 as a fraction with a common denominator, multiply by yy.
y=-4x3y(4x2+4y2+25)+25xy(4x2+4y2+25)-4xy4x2+4y2+25yy
Step 1.5.5.3.3
Write each expression with a common denominator of y(4x2+4y2+25), by multiplying each by an appropriate factor of 1.
Tap for more steps...
Step 1.5.5.3.3.1
Multiply 4xy4x2+4y2+25 by yy.
y=-4x3y(4x2+4y2+25)+25xy(4x2+4y2+25)-4xyy(4x2+4y2+25)y
Step 1.5.5.3.3.2
Reorder the factors of (4x2+4y2+25)y.
y=-4x3y(4x2+4y2+25)+25xy(4x2+4y2+25)-4xyyy(4x2+4y2+25)
y=-4x3y(4x2+4y2+25)+25xy(4x2+4y2+25)-4xyyy(4x2+4y2+25)
Step 1.5.5.3.4
Combine the numerators over the common denominator.
y=-4x3y(4x2+4y2+25)+25x-4xyyy(4x2+4y2+25)
Step 1.5.5.3.5
Combine the numerators over the common denominator.
y=-4x3+25x-4xyyy(4x2+4y2+25)
Step 1.5.5.3.6
Multiply y by y by adding the exponents.
Tap for more steps...
Step 1.5.5.3.6.1
Move y.
y=-4x3+25x-4x(yy)y(4x2+4y2+25)
Step 1.5.5.3.6.2
Multiply y by y.
y=-4x3+25x-4xy2y(4x2+4y2+25)
y=-4x3+25x-4xy2y(4x2+4y2+25)
Step 1.5.5.3.7
Factor x out of -4x3+25x-4xy2.
Tap for more steps...
Step 1.5.5.3.7.1
Factor x out of -4x3.
y=x(-4x2)+25x-4xy2y(4x2+4y2+25)
Step 1.5.5.3.7.2
Factor x out of 25x.
y=x(-4x2)+x25-4xy2y(4x2+4y2+25)
Step 1.5.5.3.7.3
Factor x out of -4xy2.
y=x(-4x2)+x25+x(-4y2)y(4x2+4y2+25)
Step 1.5.5.3.7.4
Factor x out of x(-4x2)+x25.
y=x(-4x2+25)+x(-4y2)y(4x2+4y2+25)
Step 1.5.5.3.7.5
Factor x out of x(-4x2+25)+x(-4y2).
y=x(-4x2+25-4y2)y(4x2+4y2+25)
y=x(-4x2+25-4y2)y(4x2+4y2+25)
Step 1.5.5.3.8
Factor -1 out of -4x2.
y=x(-(4x2)+25-4y2)y(4x2+4y2+25)
Step 1.5.5.3.9
Rewrite 25 as -1(-25).
y=x(-(4x2)-1(-25)-4y2)y(4x2+4y2+25)
Step 1.5.5.3.10
Factor -1 out of -(4x2)-1(-25).
y=x(-(4x2-25)-4y2)y(4x2+4y2+25)
Step 1.5.5.3.11
Factor -1 out of -4y2.
y=x(-(4x2-25)-(4y2))y(4x2+4y2+25)
Step 1.5.5.3.12
Factor -1 out of -(4x2-25)-(4y2).
y=x(-(4x2-25+4y2))y(4x2+4y2+25)
Step 1.5.5.3.13
Simplify the expression.
Tap for more steps...
Step 1.5.5.3.13.1
Rewrite -(4x2-25+4y2) as -1(4x2-25+4y2).
y=x(-1(4x2-25+4y2))y(4x2+4y2+25)
Step 1.5.5.3.13.2
Move the negative in front of the fraction.
y=-x(4x2-25+4y2)y(4x2+4y2+25)
y=-x(4x2-25+4y2)y(4x2+4y2+25)
y=-x(4x2-25+4y2)y(4x2+4y2+25)
y=-x(4x2-25+4y2)y(4x2+4y2+25)
y=-x(4x2-25+4y2)y(4x2+4y2+25)
Step 1.6
Replace y with dydx.
dydx=-x(4x2-25+4y2)y(4x2+4y2+25)
Step 1.7
Evaluate at x=3 and y=1.
Tap for more steps...
Step 1.7.1
Replace the variable x with 3 in the expression.
-(3)(4(3)2-25+4y2)y(4(3)2+4y2+25)
Step 1.7.2
Replace the variable y with 1 in the expression.
-(3)(4(3)2-25+4(1)2)(1)(4(3)2+4(1)2+25)
Step 1.7.3
Simplify the numerator.
Tap for more steps...
Step 1.7.3.1
Raise 3 to the power of 2.
-3(49-25+412)1(432+412+25)
Step 1.7.3.2
Multiply 4 by 9.
-3(36-25+412)1(432+412+25)
Step 1.7.3.3
One to any power is one.
-3(36-25+41)1(432+412+25)
Step 1.7.3.4
Multiply 4 by 1.
-3(36-25+4)1(432+412+25)
Step 1.7.3.5
Subtract 25 from 36.
-3(11+4)1(432+412+25)
Step 1.7.3.6
Add 11 and 4.
-3151(432+412+25)
-3151(432+412+25)
Step 1.7.4
Multiply.
Tap for more steps...
Step 1.7.4.1
Multiply 432+412+25 by 1.
-315432+412+25
Step 1.7.4.2
Multiply 3 by 15.
-45432+412+25
-45432+412+25
Step 1.7.5
Simplify the denominator.
Tap for more steps...
Step 1.7.5.1
Raise 3 to the power of 2.
-4549+412+25
Step 1.7.5.2
Multiply 4 by 9.
-4536+412+25
Step 1.7.5.3
One to any power is one.
-4536+41+25
Step 1.7.5.4
Multiply 4 by 1.
-4536+4+25
Step 1.7.5.5
Add 36 and 4.
-4540+25
Step 1.7.5.6
Add 40 and 25.
-4565
-4565
Step 1.7.6
Cancel the common factor of 45 and 65.
Tap for more steps...
Step 1.7.6.1
Factor 5 out of 45.
-5(9)65
Step 1.7.6.2
Cancel the common factors.
Tap for more steps...
Step 1.7.6.2.1
Factor 5 out of 65.
-59513
Step 1.7.6.2.2
Cancel the common factor.
-59513
Step 1.7.6.2.3
Rewrite the expression.
-913
-913
-913
-913
-913
Step 2
Plug the slope and point values into the point-slope formula and solve for y.
Tap for more steps...
Step 2.1
Use the slope -913 and a given point (3,1) to substitute for x1 and y1 in the point-slope form y-y1=m(x-x1), which is derived from the slope equation m=y2-y1x2-x1.
y-(1)=-913(x-(3))
Step 2.2
Simplify the equation and keep it in point-slope form.
y-1=-913(x-3)
Step 2.3
Solve for y.
Tap for more steps...
Step 2.3.1
Simplify -913(x-3).
Tap for more steps...
Step 2.3.1.1
Rewrite.
y-1=0+0-913(x-3)
Step 2.3.1.2
Simplify by adding zeros.
y-1=-913(x-3)
Step 2.3.1.3
Apply the distributive property.
y-1=-913x-913-3
Step 2.3.1.4
Combine x and 913.
y-1=-x913-913-3
Step 2.3.1.5
Multiply -913-3.
Tap for more steps...
Step 2.3.1.5.1
Multiply -3 by -1.
y-1=-x913+3(913)
Step 2.3.1.5.2
Combine 3 and 913.
y-1=-x913+3913
Step 2.3.1.5.3
Multiply 3 by 9.
y-1=-x913+2713
y-1=-x913+2713
Step 2.3.1.6
Move 9 to the left of x.
y-1=-9x13+2713
y-1=-9x13+2713
Step 2.3.2
Move all terms not containing y to the right side of the equation.
Tap for more steps...
Step 2.3.2.1
Add 1 to both sides of the equation.
y=-9x13+2713+1
Step 2.3.2.2
Write 1 as a fraction with a common denominator.
y=-9x13+2713+1313
Step 2.3.2.3
Combine the numerators over the common denominator.
y=-9x13+27+1313
Step 2.3.2.4
Add 27 and 13.
y=-9x13+4013
y=-9x13+4013
Step 2.3.3
Write in y=mx+b form.
Tap for more steps...
Step 2.3.3.1
Reorder terms.
y=-(913x)+4013
Step 2.3.3.2
Remove parentheses.
y=-913x+4013
y=-913x+4013
y=-913x+4013
y=-913x+4013
Step 3
 [x2  12  π  xdx ]