Enter a problem...
Calculus Examples
2(x2+y2)2=25(x2-y2)2(x2+y2)2=25(x2−y2) at (3,1)
Step 1
Step 1.1
Differentiate both sides of the equation.
ddx(2(x2+y2)2)=ddx(25(x2-y2))
Step 1.2
Differentiate the left side of the equation.
Step 1.2.1
Since 2 is constant with respect to x, the derivative of 2(x2+y2)2 with respect to x is 2ddx[(x2+y2)2].
2ddx[(x2+y2)2]
Step 1.2.2
Differentiate using the chain rule, which states that ddx[f(g(x))] is f′(g(x))g′(x) where f(x)=x2 and g(x)=x2+y2.
Step 1.2.2.1
To apply the Chain Rule, set u1 as x2+y2.
2(ddu1[u12]ddx[x2+y2])
Step 1.2.2.2
Differentiate using the Power Rule which states that ddu1[u1n] is nu1n-1 where n=2.
2(2u1ddx[x2+y2])
Step 1.2.2.3
Replace all occurrences of u1 with x2+y2.
2(2(x2+y2)ddx[x2+y2])
2(2(x2+y2)ddx[x2+y2])
Step 1.2.3
Differentiate.
Step 1.2.3.1
Multiply 2 by 2.
4((x2+y2)ddx[x2+y2])
Step 1.2.3.2
By the Sum Rule, the derivative of x2+y2 with respect to x is ddx[x2]+ddx[y2].
4(x2+y2)(ddx[x2]+ddx[y2])
Step 1.2.3.3
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=2.
4(x2+y2)(2x+ddx[y2])
4(x2+y2)(2x+ddx[y2])
Step 1.2.4
Differentiate using the chain rule, which states that ddx[f(g(x))] is f′(g(x))g′(x) where f(x)=x2 and g(x)=y.
Step 1.2.4.1
To apply the Chain Rule, set u2 as y.
4(x2+y2)(2x+ddu2[u22]ddx[y])
Step 1.2.4.2
Differentiate using the Power Rule which states that ddu2[u2n] is nu2n-1 where n=2.
4(x2+y2)(2x+2u2ddx[y])
Step 1.2.4.3
Replace all occurrences of u2 with y.
4(x2+y2)(2x+2yddx[y])
4(x2+y2)(2x+2yddx[y])
Step 1.2.5
Rewrite ddx[y] as y′.
4(x2+y2)(2x+2yy′)
Step 1.2.6
Simplify.
Step 1.2.6.1
Apply the distributive property.
(4x2+4y2)(2x+2yy′)
Step 1.2.6.2
Reorder the factors of (4x2+4y2)(2x+2yy′).
(2x+2yy′)(4x2+4y2)
(2x+2yy′)(4x2+4y2)
(2x+2yy′)(4x2+4y2)
Step 1.3
Differentiate the right side of the equation.
Step 1.3.1
Differentiate.
Step 1.3.1.1
Since 25 is constant with respect to x, the derivative of 25(x2-y2) with respect to x is 25ddx[x2-y2].
25ddx[x2-y2]
Step 1.3.1.2
By the Sum Rule, the derivative of x2-y2 with respect to x is ddx[x2]+ddx[-y2].
25(ddx[x2]+ddx[-y2])
Step 1.3.1.3
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=2.
25(2x+ddx[-y2])
Step 1.3.1.4
Since -1 is constant with respect to x, the derivative of -y2 with respect to x is -ddx[y2].
25(2x-ddx[y2])
25(2x-ddx[y2])
Step 1.3.2
Differentiate using the chain rule, which states that ddx[f(g(x))] is f′(g(x))g′(x) where f(x)=x2 and g(x)=y.
Step 1.3.2.1
To apply the Chain Rule, set u as y.
25(2x-(ddu[u2]ddx[y]))
Step 1.3.2.2
Differentiate using the Power Rule which states that ddu[un] is nun-1 where n=2.
25(2x-(2uddx[y]))
Step 1.3.2.3
Replace all occurrences of u with y.
25(2x-(2yddx[y]))
25(2x-(2yddx[y]))
Step 1.3.3
Multiply 2 by -1.
25(2x-2(yddx[y]))
Step 1.3.4
Rewrite ddx[y] as y′.
25(2x-2yy′)
Step 1.3.5
Simplify.
Step 1.3.5.1
Apply the distributive property.
25(2x)+25(-2yy′)
Step 1.3.5.2
Combine terms.
Step 1.3.5.2.1
Multiply 2 by 25.
50x+25(-2yy′)
Step 1.3.5.2.2
Multiply -2 by 25.
50x-50yy′
50x-50yy′
Step 1.3.5.3
Reorder terms.
-50yy′+50x
-50yy′+50x
-50yy′+50x
Step 1.4
Reform the equation by setting the left side equal to the right side.
(2x+2yy′)(4x2+4y2)=-50yy′+50x
Step 1.5
Solve for y′.
Step 1.5.1
Simplify (2x+2yy′)(4x2+4y2).
Step 1.5.1.1
Rewrite.
0+0+(2x+2yy′)(4x2+4y2)=-50yy′+50x
Step 1.5.1.2
Simplify by adding zeros.
(2x+2yy′)(4x2+4y2)=-50yy′+50x
Step 1.5.1.3
Expand (2x+2yy′)(4x2+4y2) using the FOIL Method.
Step 1.5.1.3.1
Apply the distributive property.
2x(4x2+4y2)+2yy′(4x2+4y2)=-50yy′+50x
Step 1.5.1.3.2
Apply the distributive property.
2x(4x2)+2x(4y2)+2yy′(4x2+4y2)=-50yy′+50x
Step 1.5.1.3.3
Apply the distributive property.
2x(4x2)+2x(4y2)+2yy′(4x2)+2yy′(4y2)=-50yy′+50x
2x(4x2)+2x(4y2)+2yy′(4x2)+2yy′(4y2)=-50yy′+50x
Step 1.5.1.4
Simplify each term.
Step 1.5.1.4.1
Rewrite using the commutative property of multiplication.
2⋅4x⋅x2+2x(4y2)+2yy′(4x2)+2yy′(4y2)=-50yy′+50x
Step 1.5.1.4.2
Multiply x by x2 by adding the exponents.
Step 1.5.1.4.2.1
Move x2.
2⋅4(x2x)+2x(4y2)+2yy′(4x2)+2yy′(4y2)=-50yy′+50x
Step 1.5.1.4.2.2
Multiply x2 by x.
Step 1.5.1.4.2.2.1
Raise x to the power of 1.
2⋅4(x2x1)+2x(4y2)+2yy′(4x2)+2yy′(4y2)=-50yy′+50x
Step 1.5.1.4.2.2.2
Use the power rule aman=am+n to combine exponents.
2⋅4x2+1+2x(4y2)+2yy′(4x2)+2yy′(4y2)=-50yy′+50x
2⋅4x2+1+2x(4y2)+2yy′(4x2)+2yy′(4y2)=-50yy′+50x
Step 1.5.1.4.2.3
Add 2 and 1.
2⋅4x3+2x(4y2)+2yy′(4x2)+2yy′(4y2)=-50yy′+50x
2⋅4x3+2x(4y2)+2yy′(4x2)+2yy′(4y2)=-50yy′+50x
Step 1.5.1.4.3
Multiply 2 by 4.
8x3+2x(4y2)+2yy′(4x2)+2yy′(4y2)=-50yy′+50x
Step 1.5.1.4.4
Rewrite using the commutative property of multiplication.
8x3+2⋅4xy2+2yy′(4x2)+2yy′(4y2)=-50yy′+50x
Step 1.5.1.4.5
Multiply 2 by 4.
8x3+8xy2+2yy′(4x2)+2yy′(4y2)=-50yy′+50x
Step 1.5.1.4.6
Multiply 4 by 2.
8x3+8xy2+8yy′x2+2yy′(4y2)=-50yy′+50x
Step 1.5.1.4.7
Multiply y by y2 by adding the exponents.
Step 1.5.1.4.7.1
Move y2.
8x3+8xy2+8yy′x2+2(y2y)y′⋅4=-50yy′+50x
Step 1.5.1.4.7.2
Multiply y2 by y.
Step 1.5.1.4.7.2.1
Raise y to the power of 1.
8x3+8xy2+8yy′x2+2(y2y1)y′⋅4=-50yy′+50x
Step 1.5.1.4.7.2.2
Use the power rule aman=am+n to combine exponents.
8x3+8xy2+8yy′x2+2y2+1y′⋅4=-50yy′+50x
8x3+8xy2+8yy′x2+2y2+1y′⋅4=-50yy′+50x
Step 1.5.1.4.7.3
Add 2 and 1.
8x3+8xy2+8yy′x2+2y3y′⋅4=-50yy′+50x
8x3+8xy2+8yy′x2+2y3y′⋅4=-50yy′+50x
Step 1.5.1.4.8
Multiply 4 by 2.
8x3+8xy2+8yy′x2+8y3y′=-50yy′+50x
8x3+8xy2+8yy′x2+8y3y′=-50yy′+50x
8x3+8xy2+8yy′x2+8y3y′=-50yy′+50x
Step 1.5.2
Add 50yy′ to both sides of the equation.
8x3+8xy2+8yy′x2+8y3y′+50yy′=50x
Step 1.5.3
Move all terms not containing y′ to the right side of the equation.
Step 1.5.3.1
Subtract 8x3 from both sides of the equation.
8xy2+8yy′x2+8y3y′+50yy′=50x-8x3
Step 1.5.3.2
Subtract 8xy2 from both sides of the equation.
8yy′x2+8y3y′+50yy′=50x-8x3-8xy2
8yy′x2+8y3y′+50yy′=50x-8x3-8xy2
Step 1.5.4
Factor 2yy′ out of 8yy′x2+8y3y′+50yy′.
Step 1.5.4.1
Factor 2yy′ out of 8yy′x2.
2yy′(4x2)+8y3y′+50yy′=50x-8x3-8xy2
Step 1.5.4.2
Factor 2yy′ out of 8y3y′.
2yy′(4x2)+2yy′(4y2)+50yy′=50x-8x3-8xy2
Step 1.5.4.3
Factor 2yy′ out of 50yy′.
2yy′(4x2)+2yy′(4y2)+2yy′⋅25=50x-8x3-8xy2
Step 1.5.4.4
Factor 2yy′ out of 2yy′(4x2)+2yy′(4y2).
2yy′(4x2+4y2)+2yy′⋅25=50x-8x3-8xy2
Step 1.5.4.5
Factor 2yy′ out of 2yy′(4x2+4y2)+2yy′⋅25.
2yy′(4x2+4y2+25)=50x-8x3-8xy2
2yy′(4x2+4y2+25)=50x-8x3-8xy2
Step 1.5.5
Divide each term in 2yy′(4x2+4y2+25)=50x-8x3-8xy2 by 2y(4x2+4y2+25) and simplify.
Step 1.5.5.1
Divide each term in 2yy′(4x2+4y2+25)=50x-8x3-8xy2 by 2y(4x2+4y2+25).
2yy′(4x2+4y2+25)2y(4x2+4y2+25)=50x2y(4x2+4y2+25)+-8x32y(4x2+4y2+25)+-8xy22y(4x2+4y2+25)
Step 1.5.5.2
Simplify the left side.
Step 1.5.5.2.1
Cancel the common factor of 2.
Step 1.5.5.2.1.1
Cancel the common factor.
2yy′(4x2+4y2+25)2y(4x2+4y2+25)=50x2y(4x2+4y2+25)+-8x32y(4x2+4y2+25)+-8xy22y(4x2+4y2+25)
Step 1.5.5.2.1.2
Rewrite the expression.
yy′(4x2+4y2+25)y(4x2+4y2+25)=50x2y(4x2+4y2+25)+-8x32y(4x2+4y2+25)+-8xy22y(4x2+4y2+25)
yy′(4x2+4y2+25)y(4x2+4y2+25)=50x2y(4x2+4y2+25)+-8x32y(4x2+4y2+25)+-8xy22y(4x2+4y2+25)
Step 1.5.5.2.2
Cancel the common factor of y.
Step 1.5.5.2.2.1
Cancel the common factor.
yy′(4x2+4y2+25)y(4x2+4y2+25)=50x2y(4x2+4y2+25)+-8x32y(4x2+4y2+25)+-8xy22y(4x2+4y2+25)
Step 1.5.5.2.2.2
Rewrite the expression.
y′(4x2+4y2+25)4x2+4y2+25=50x2y(4x2+4y2+25)+-8x32y(4x2+4y2+25)+-8xy22y(4x2+4y2+25)
y′(4x2+4y2+25)4x2+4y2+25=50x2y(4x2+4y2+25)+-8x32y(4x2+4y2+25)+-8xy22y(4x2+4y2+25)
Step 1.5.5.2.3
Cancel the common factor of 4x2+4y2+25.
Step 1.5.5.2.3.1
Cancel the common factor.
y′(4x2+4y2+25)4x2+4y2+25=50x2y(4x2+4y2+25)+-8x32y(4x2+4y2+25)+-8xy22y(4x2+4y2+25)
Step 1.5.5.2.3.2
Divide y′ by 1.
y′=50x2y(4x2+4y2+25)+-8x32y(4x2+4y2+25)+-8xy22y(4x2+4y2+25)
y′=50x2y(4x2+4y2+25)+-8x32y(4x2+4y2+25)+-8xy22y(4x2+4y2+25)
y′=50x2y(4x2+4y2+25)+-8x32y(4x2+4y2+25)+-8xy22y(4x2+4y2+25)
Step 1.5.5.3
Simplify the right side.
Step 1.5.5.3.1
Simplify each term.
Step 1.5.5.3.1.1
Cancel the common factor of 50 and 2.
Step 1.5.5.3.1.1.1
Factor 2 out of 50x.
y′=2(25x)2y(4x2+4y2+25)+-8x32y(4x2+4y2+25)+-8xy22y(4x2+4y2+25)
Step 1.5.5.3.1.1.2
Cancel the common factors.
Step 1.5.5.3.1.1.2.1
Factor 2 out of 2y(4x2+4y2+25).
y′=2(25x)2(y(4x2+4y2+25))+-8x32y(4x2+4y2+25)+-8xy22y(4x2+4y2+25)
Step 1.5.5.3.1.1.2.2
Cancel the common factor.
y′=2(25x)2(y(4x2+4y2+25))+-8x32y(4x2+4y2+25)+-8xy22y(4x2+4y2+25)
Step 1.5.5.3.1.1.2.3
Rewrite the expression.
y′=25xy(4x2+4y2+25)+-8x32y(4x2+4y2+25)+-8xy22y(4x2+4y2+25)
y′=25xy(4x2+4y2+25)+-8x32y(4x2+4y2+25)+-8xy22y(4x2+4y2+25)
y′=25xy(4x2+4y2+25)+-8x32y(4x2+4y2+25)+-8xy22y(4x2+4y2+25)
Step 1.5.5.3.1.2
Cancel the common factor of -8 and 2.
Step 1.5.5.3.1.2.1
Factor 2 out of -8x3.
y′=25xy(4x2+4y2+25)+2(-4x3)2y(4x2+4y2+25)+-8xy22y(4x2+4y2+25)
Step 1.5.5.3.1.2.2
Cancel the common factors.
Step 1.5.5.3.1.2.2.1
Factor 2 out of 2y(4x2+4y2+25).
y′=25xy(4x2+4y2+25)+2(-4x3)2(y(4x2+4y2+25))+-8xy22y(4x2+4y2+25)
Step 1.5.5.3.1.2.2.2
Cancel the common factor.
y′=25xy(4x2+4y2+25)+2(-4x3)2(y(4x2+4y2+25))+-8xy22y(4x2+4y2+25)
Step 1.5.5.3.1.2.2.3
Rewrite the expression.
y′=25xy(4x2+4y2+25)+-4x3y(4x2+4y2+25)+-8xy22y(4x2+4y2+25)
y′=25xy(4x2+4y2+25)+-4x3y(4x2+4y2+25)+-8xy22y(4x2+4y2+25)
y′=25xy(4x2+4y2+25)+-4x3y(4x2+4y2+25)+-8xy22y(4x2+4y2+25)
Step 1.5.5.3.1.3
Move the negative in front of the fraction.
y′=25xy(4x2+4y2+25)-4x3y(4x2+4y2+25)+-8xy22y(4x2+4y2+25)
Step 1.5.5.3.1.4
Cancel the common factor of -8 and 2.
Step 1.5.5.3.1.4.1
Factor 2 out of -8xy2.
y′=25xy(4x2+4y2+25)-4x3y(4x2+4y2+25)+2(-4xy2)2y(4x2+4y2+25)
Step 1.5.5.3.1.4.2
Cancel the common factors.
Step 1.5.5.3.1.4.2.1
Factor 2 out of 2y(4x2+4y2+25).
y′=25xy(4x2+4y2+25)-4x3y(4x2+4y2+25)+2(-4xy2)2(y(4x2+4y2+25))
Step 1.5.5.3.1.4.2.2
Cancel the common factor.
y′=25xy(4x2+4y2+25)-4x3y(4x2+4y2+25)+2(-4xy2)2(y(4x2+4y2+25))
Step 1.5.5.3.1.4.2.3
Rewrite the expression.
y′=25xy(4x2+4y2+25)-4x3y(4x2+4y2+25)+-4xy2y(4x2+4y2+25)
y′=25xy(4x2+4y2+25)-4x3y(4x2+4y2+25)+-4xy2y(4x2+4y2+25)
y′=25xy(4x2+4y2+25)-4x3y(4x2+4y2+25)+-4xy2y(4x2+4y2+25)
Step 1.5.5.3.1.5
Cancel the common factor of y2 and y.
Step 1.5.5.3.1.5.1
Factor y out of -4xy2.
y′=25xy(4x2+4y2+25)-4x3y(4x2+4y2+25)+y(-4xy)y(4x2+4y2+25)
Step 1.5.5.3.1.5.2
Cancel the common factors.
Step 1.5.5.3.1.5.2.1
Cancel the common factor.
y′=25xy(4x2+4y2+25)-4x3y(4x2+4y2+25)+y(-4xy)y(4x2+4y2+25)
Step 1.5.5.3.1.5.2.2
Rewrite the expression.
y′=25xy(4x2+4y2+25)-4x3y(4x2+4y2+25)+-4xy4x2+4y2+25
y′=25xy(4x2+4y2+25)-4x3y(4x2+4y2+25)+-4xy4x2+4y2+25
y′=25xy(4x2+4y2+25)-4x3y(4x2+4y2+25)+-4xy4x2+4y2+25
Step 1.5.5.3.1.6
Move the negative in front of the fraction.
y′=25xy(4x2+4y2+25)-4x3y(4x2+4y2+25)-4xy4x2+4y2+25
y′=25xy(4x2+4y2+25)-4x3y(4x2+4y2+25)-4xy4x2+4y2+25
Step 1.5.5.3.2
To write -4xy4x2+4y2+25 as a fraction with a common denominator, multiply by yy.
y′=-4x3y(4x2+4y2+25)+25xy(4x2+4y2+25)-4xy4x2+4y2+25⋅yy
Step 1.5.5.3.3
Write each expression with a common denominator of y(4x2+4y2+25), by multiplying each by an appropriate factor of 1.
Step 1.5.5.3.3.1
Multiply 4xy4x2+4y2+25 by yy.
y′=-4x3y(4x2+4y2+25)+25xy(4x2+4y2+25)-4xy⋅y(4x2+4y2+25)y
Step 1.5.5.3.3.2
Reorder the factors of (4x2+4y2+25)y.
y′=-4x3y(4x2+4y2+25)+25xy(4x2+4y2+25)-4xy⋅yy(4x2+4y2+25)
y′=-4x3y(4x2+4y2+25)+25xy(4x2+4y2+25)-4xy⋅yy(4x2+4y2+25)
Step 1.5.5.3.4
Combine the numerators over the common denominator.
y′=-4x3y(4x2+4y2+25)+25x-4xy⋅yy(4x2+4y2+25)
Step 1.5.5.3.5
Combine the numerators over the common denominator.
y′=-4x3+25x-4xy⋅yy(4x2+4y2+25)
Step 1.5.5.3.6
Multiply y by y by adding the exponents.
Step 1.5.5.3.6.1
Move y.
y′=-4x3+25x-4x(y⋅y)y(4x2+4y2+25)
Step 1.5.5.3.6.2
Multiply y by y.
y′=-4x3+25x-4xy2y(4x2+4y2+25)
y′=-4x3+25x-4xy2y(4x2+4y2+25)
Step 1.5.5.3.7
Factor x out of -4x3+25x-4xy2.
Step 1.5.5.3.7.1
Factor x out of -4x3.
y′=x(-4x2)+25x-4xy2y(4x2+4y2+25)
Step 1.5.5.3.7.2
Factor x out of 25x.
y′=x(-4x2)+x⋅25-4xy2y(4x2+4y2+25)
Step 1.5.5.3.7.3
Factor x out of -4xy2.
y′=x(-4x2)+x⋅25+x(-4y2)y(4x2+4y2+25)
Step 1.5.5.3.7.4
Factor x out of x(-4x2)+x⋅25.
y′=x(-4x2+25)+x(-4y2)y(4x2+4y2+25)
Step 1.5.5.3.7.5
Factor x out of x(-4x2+25)+x(-4y2).
y′=x(-4x2+25-4y2)y(4x2+4y2+25)
y′=x(-4x2+25-4y2)y(4x2+4y2+25)
Step 1.5.5.3.8
Factor -1 out of -4x2.
y′=x(-(4x2)+25-4y2)y(4x2+4y2+25)
Step 1.5.5.3.9
Rewrite 25 as -1(-25).
y′=x(-(4x2)-1(-25)-4y2)y(4x2+4y2+25)
Step 1.5.5.3.10
Factor -1 out of -(4x2)-1(-25).
y′=x(-(4x2-25)-4y2)y(4x2+4y2+25)
Step 1.5.5.3.11
Factor -1 out of -4y2.
y′=x(-(4x2-25)-(4y2))y(4x2+4y2+25)
Step 1.5.5.3.12
Factor -1 out of -(4x2-25)-(4y2).
y′=x(-(4x2-25+4y2))y(4x2+4y2+25)
Step 1.5.5.3.13
Simplify the expression.
Step 1.5.5.3.13.1
Rewrite -(4x2-25+4y2) as -1(4x2-25+4y2).
y′=x(-1(4x2-25+4y2))y(4x2+4y2+25)
Step 1.5.5.3.13.2
Move the negative in front of the fraction.
y′=-x(4x2-25+4y2)y(4x2+4y2+25)
y′=-x(4x2-25+4y2)y(4x2+4y2+25)
y′=-x(4x2-25+4y2)y(4x2+4y2+25)
y′=-x(4x2-25+4y2)y(4x2+4y2+25)
y′=-x(4x2-25+4y2)y(4x2+4y2+25)
Step 1.6
Replace y′ with dydx.
dydx=-x(4x2-25+4y2)y(4x2+4y2+25)
Step 1.7
Evaluate at x=3 and y=1.
Step 1.7.1
Replace the variable x with 3 in the expression.
-(3)(4(3)2-25+4y2)y(4(3)2+4y2+25)
Step 1.7.2
Replace the variable y with 1 in the expression.
-(3)(4(3)2-25+4(1)2)(1)(4(3)2+4(1)2+25)
Step 1.7.3
Simplify the numerator.
Step 1.7.3.1
Raise 3 to the power of 2.
-3(4⋅9-25+4⋅12)1(4⋅32+4⋅12+25)
Step 1.7.3.2
Multiply 4 by 9.
-3(36-25+4⋅12)1(4⋅32+4⋅12+25)
Step 1.7.3.3
One to any power is one.
-3(36-25+4⋅1)1(4⋅32+4⋅12+25)
Step 1.7.3.4
Multiply 4 by 1.
-3(36-25+4)1(4⋅32+4⋅12+25)
Step 1.7.3.5
Subtract 25 from 36.
-3(11+4)1(4⋅32+4⋅12+25)
Step 1.7.3.6
Add 11 and 4.
-3⋅151(4⋅32+4⋅12+25)
-3⋅151(4⋅32+4⋅12+25)
Step 1.7.4
Multiply.
Step 1.7.4.1
Multiply 4⋅32+4⋅12+25 by 1.
-3⋅154⋅32+4⋅12+25
Step 1.7.4.2
Multiply 3 by 15.
-454⋅32+4⋅12+25
-454⋅32+4⋅12+25
Step 1.7.5
Simplify the denominator.
Step 1.7.5.1
Raise 3 to the power of 2.
-454⋅9+4⋅12+25
Step 1.7.5.2
Multiply 4 by 9.
-4536+4⋅12+25
Step 1.7.5.3
One to any power is one.
-4536+4⋅1+25
Step 1.7.5.4
Multiply 4 by 1.
-4536+4+25
Step 1.7.5.5
Add 36 and 4.
-4540+25
Step 1.7.5.6
Add 40 and 25.
-4565
-4565
Step 1.7.6
Cancel the common factor of 45 and 65.
Step 1.7.6.1
Factor 5 out of 45.
-5(9)65
Step 1.7.6.2
Cancel the common factors.
Step 1.7.6.2.1
Factor 5 out of 65.
-5⋅95⋅13
Step 1.7.6.2.2
Cancel the common factor.
-5⋅95⋅13
Step 1.7.6.2.3
Rewrite the expression.
-913
-913
-913
-913
-913
Step 2
Step 2.1
Use the slope -913 and a given point (3,1) to substitute for x1 and y1 in the point-slope form y-y1=m(x-x1), which is derived from the slope equation m=y2-y1x2-x1.
y-(1)=-913⋅(x-(3))
Step 2.2
Simplify the equation and keep it in point-slope form.
y-1=-913⋅(x-3)
Step 2.3
Solve for y.
Step 2.3.1
Simplify -913⋅(x-3).
Step 2.3.1.1
Rewrite.
y-1=0+0-913⋅(x-3)
Step 2.3.1.2
Simplify by adding zeros.
y-1=-913⋅(x-3)
Step 2.3.1.3
Apply the distributive property.
y-1=-913x-913⋅-3
Step 2.3.1.4
Combine x and 913.
y-1=-x⋅913-913⋅-3
Step 2.3.1.5
Multiply -913⋅-3.
Step 2.3.1.5.1
Multiply -3 by -1.
y-1=-x⋅913+3(913)
Step 2.3.1.5.2
Combine 3 and 913.
y-1=-x⋅913+3⋅913
Step 2.3.1.5.3
Multiply 3 by 9.
y-1=-x⋅913+2713
y-1=-x⋅913+2713
Step 2.3.1.6
Move 9 to the left of x.
y-1=-9x13+2713
y-1=-9x13+2713
Step 2.3.2
Move all terms not containing y to the right side of the equation.
Step 2.3.2.1
Add 1 to both sides of the equation.
y=-9x13+2713+1
Step 2.3.2.2
Write 1 as a fraction with a common denominator.
y=-9x13+2713+1313
Step 2.3.2.3
Combine the numerators over the common denominator.
y=-9x13+27+1313
Step 2.3.2.4
Add 27 and 13.
y=-9x13+4013
y=-9x13+4013
Step 2.3.3
Write in y=mx+b form.
Step 2.3.3.1
Reorder terms.
y=-(913x)+4013
Step 2.3.3.2
Remove parentheses.
y=-913x+4013
y=-913x+4013
y=-913x+4013
y=-913x+4013
Step 3