Calculus Examples

Find the Tangent Line at (18,6) f(x) = square root of 2x at (18,6)
f(x)=2xf(x)=2x at (18,6)(18,6)
Step 1
Find the first derivative and evaluate at x=18x=18 and y=6y=6 to find the slope of the tangent line.
Tap for more steps...
Step 1.1
Simplify with factoring out.
Tap for more steps...
Step 1.1.1
Use nax=axnnax=axn to rewrite 2x2x as (2x)12(2x)12.
ddx[(2x)12]ddx[(2x)12]
Step 1.1.2
Factor 22 out of 2x2x.
ddx[(2(x))12]ddx[(2(x))12]
Step 1.1.3
Apply the product rule to 2(x)2(x).
ddx[212x12]ddx[212x12]
ddx[212x12]ddx[212x12]
Step 1.2
Since 212212 is constant with respect to xx, the derivative of 212x12212x12 with respect to xx is 212ddx[x12]212ddx[x12].
212ddx[x12]212ddx[x12]
Step 1.3
Differentiate using the Power Rule which states that ddx[xn]ddx[xn] is nxn-1nxn1 where n=12n=12.
212(12x12-1)212(12x121)
Step 1.4
To write -11 as a fraction with a common denominator, multiply by 2222.
212(12x12-122)212(12x12122)
Step 1.5
Combine -11 and 2222.
212(12x12+-122)212(12x12+122)
Step 1.6
Combine the numerators over the common denominator.
212(12x1-122)212(12x1122)
Step 1.7
Simplify the numerator.
Tap for more steps...
Step 1.7.1
Multiply -11 by 22.
212(12x1-22)212(12x122)
Step 1.7.2
Subtract 22 from 11.
212(12x-12)212(12x12)
212(12x-12)212(12x12)
Step 1.8
Move the negative in front of the fraction.
212(12x-12)212(12x12)
Step 1.9
Combine 1212 and x-12x12.
212x-122212x122
Step 1.10
Combine 212212 and x-122x122.
212x-122212x122
Step 1.11
Simplify the expression.
Tap for more steps...
Step 1.11.1
Move 212212 to the denominator using the negative exponent rule bn=1b-nbn=1bn.
x-1222-12x122212
Step 1.11.2
Move x-12x12 to the denominator using the negative exponent rule b-n=1bnbn=1bn.
122-12x1212212x12
122-12x1212212x12
Step 1.12
Multiply 2 by 2-12 by adding the exponents.
Tap for more steps...
Step 1.12.1
Multiply 2 by 2-12.
Tap for more steps...
Step 1.12.1.1
Raise 2 to the power of 1.
1212-12x12
Step 1.12.1.2
Use the power rule aman=am+n to combine exponents.
121-12x12
121-12x12
Step 1.12.2
Write 1 as a fraction with a common denominator.
1222-12x12
Step 1.12.3
Combine the numerators over the common denominator.
122-12x12
Step 1.12.4
Subtract 1 from 2.
1212x12
1212x12
Step 1.13
Evaluate the derivative at x=18.
1212(18)12
Step 1.14
Remove parentheses.
12121812
12121812
Step 2
Plug the slope and point values into the point-slope formula and solve for y.
Tap for more steps...
Step 2.1
Use the slope 12121812 and a given point (18,6) to substitute for x1 and y1 in the point-slope form y-y1=m(x-x1), which is derived from the slope equation m=y2-y1x2-x1.
y-(6)=12121812(x-(18))
Step 2.2
Simplify the equation and keep it in point-slope form.
y-6=12121812(x-18)
Step 2.3
Solve for y.
Tap for more steps...
Step 2.3.1
Simplify 12121812(x-18).
Tap for more steps...
Step 2.3.1.1
Rewrite.
y-6=0+0+12121812(x-18)
Step 2.3.1.2
Simplify terms.
Tap for more steps...
Step 2.3.1.2.1
Apply the distributive property.
y-6=12121812x+12121812-18
Step 2.3.1.2.2
Combine 12121812 and x.
y-6=x2121812+12121812-18
Step 2.3.1.2.3
Combine 12121812 and -18.
y-6=x2121812+-182121812
y-6=x2121812+-182121812
Step 2.3.1.3
Simplify each term.
Tap for more steps...
Step 2.3.1.3.1
Move the negative in front of the fraction.
y-6=x2121812-182121812
Step 2.3.1.3.2
Move 1812 to the numerator using the negative exponent rule 1bn=b-n.
y-6=x2121812-1818-12212
Step 2.3.1.3.3
Multiply 18 by 18-12 by adding the exponents.
Tap for more steps...
Step 2.3.1.3.3.1
Multiply 18 by 18-12.
Tap for more steps...
Step 2.3.1.3.3.1.1
Raise 18 to the power of 1.
y-6=x2121812-18118-12212
Step 2.3.1.3.3.1.2
Use the power rule aman=am+n to combine exponents.
y-6=x2121812-181-12212
y-6=x2121812-181-12212
Step 2.3.1.3.3.2
Write 1 as a fraction with a common denominator.
y-6=x2121812-1822-12212
Step 2.3.1.3.3.3
Combine the numerators over the common denominator.
y-6=x2121812-182-12212
Step 2.3.1.3.3.4
Subtract 1 from 2.
y-6=x2121812-1812212
y-6=x2121812-1812212
Step 2.3.1.3.4
Use the power of quotient rule ambm=(ab)m.
y-6=x2121812-(182)12
Step 2.3.1.3.5
Divide 18 by 2.
y-6=x2121812-912
Step 2.3.1.3.6
Rewrite 9 as 32.
y-6=x2121812-(32)12
Step 2.3.1.3.7
Apply the power rule and multiply exponents, (am)n=amn.
y-6=x2121812-32(12)
Step 2.3.1.3.8
Cancel the common factor of 2.
Tap for more steps...
Step 2.3.1.3.8.1
Cancel the common factor.
y-6=x2121812-32(12)
Step 2.3.1.3.8.2
Rewrite the expression.
y-6=x2121812-31
y-6=x2121812-31
Step 2.3.1.3.9
Evaluate the exponent.
y-6=x2121812-13
Step 2.3.1.3.10
Multiply -1 by 3.
y-6=x2121812-3
y-6=x2121812-3
y-6=x2121812-3
Step 2.3.2
Move all terms not containing y to the right side of the equation.
Tap for more steps...
Step 2.3.2.1
Add 6 to both sides of the equation.
y=x2121812-3+6
Step 2.3.2.2
Add -3 and 6.
y=x2121812+3
y=x2121812+3
Step 2.3.3
Reorder terms.
y=12121812x+3
y=12121812x+3
y=12121812x+3
Step 3
 [x2  12  π  xdx ]