Enter a problem...
Calculus Examples
f(x)=√2xf(x)=√2x at (18,6)(18,6)
Step 1
Step 1.1
Simplify with factoring out.
Step 1.1.1
Use n√ax=axnn√ax=axn to rewrite √2x√2x as (2x)12(2x)12.
ddx[(2x)12]ddx[(2x)12]
Step 1.1.2
Factor 22 out of 2x2x.
ddx[(2(x))12]ddx[(2(x))12]
Step 1.1.3
Apply the product rule to 2(x)2(x).
ddx[212x12]ddx[212x12]
ddx[212x12]ddx[212x12]
Step 1.2
Since 212212 is constant with respect to xx, the derivative of 212x12212x12 with respect to xx is 212ddx[x12]212ddx[x12].
212ddx[x12]212ddx[x12]
Step 1.3
Differentiate using the Power Rule which states that ddx[xn]ddx[xn] is nxn-1nxn−1 where n=12n=12.
212(12x12-1)212(12x12−1)
Step 1.4
To write -1−1 as a fraction with a common denominator, multiply by 2222.
212(12x12-1⋅22)212(12x12−1⋅22)
Step 1.5
Combine -1−1 and 2222.
212(12x12+-1⋅22)212(12x12+−1⋅22)
Step 1.6
Combine the numerators over the common denominator.
212(12x1-1⋅22)212(12x1−1⋅22)
Step 1.7
Simplify the numerator.
Step 1.7.1
Multiply -1−1 by 22.
212(12x1-22)212(12x1−22)
Step 1.7.2
Subtract 22 from 11.
212(12x-12)212(12x−12)
212(12x-12)212(12x−12)
Step 1.8
Move the negative in front of the fraction.
212(12x-12)212(12x−12)
Step 1.9
Combine 1212 and x-12x−12.
212x-122212x−122
Step 1.10
Combine 212212 and x-122x−122.
212x-122212x−122
Step 1.11
Simplify the expression.
Step 1.11.1
Move 212212 to the denominator using the negative exponent rule bn=1b-nbn=1b−n.
x-122⋅2-12x−122⋅2−12
Step 1.11.2
Move x-12x−12 to the denominator using the negative exponent rule b-n=1bnb−n=1bn.
12⋅2-12x1212⋅2−12x12
12⋅2-12x1212⋅2−12x12
Step 1.12
Multiply 2 by 2-12 by adding the exponents.
Step 1.12.1
Multiply 2 by 2-12.
Step 1.12.1.1
Raise 2 to the power of 1.
121⋅2-12x12
Step 1.12.1.2
Use the power rule aman=am+n to combine exponents.
121-12x12
121-12x12
Step 1.12.2
Write 1 as a fraction with a common denominator.
1222-12x12
Step 1.12.3
Combine the numerators over the common denominator.
122-12x12
Step 1.12.4
Subtract 1 from 2.
1212x12
1212x12
Step 1.13
Evaluate the derivative at x=18.
1212(18)12
Step 1.14
Remove parentheses.
1212⋅1812
1212⋅1812
Step 2
Step 2.1
Use the slope 1212⋅1812 and a given point (18,6) to substitute for x1 and y1 in the point-slope form y-y1=m(x-x1), which is derived from the slope equation m=y2-y1x2-x1.
y-(6)=1212⋅1812⋅(x-(18))
Step 2.2
Simplify the equation and keep it in point-slope form.
y-6=1212⋅1812⋅(x-18)
Step 2.3
Solve for y.
Step 2.3.1
Simplify 1212⋅1812⋅(x-18).
Step 2.3.1.1
Rewrite.
y-6=0+0+1212⋅1812⋅(x-18)
Step 2.3.1.2
Simplify terms.
Step 2.3.1.2.1
Apply the distributive property.
y-6=1212⋅1812x+1212⋅1812⋅-18
Step 2.3.1.2.2
Combine 1212⋅1812 and x.
y-6=x212⋅1812+1212⋅1812⋅-18
Step 2.3.1.2.3
Combine 1212⋅1812 and -18.
y-6=x212⋅1812+-18212⋅1812
y-6=x212⋅1812+-18212⋅1812
Step 2.3.1.3
Simplify each term.
Step 2.3.1.3.1
Move the negative in front of the fraction.
y-6=x212⋅1812-18212⋅1812
Step 2.3.1.3.2
Move 1812 to the numerator using the negative exponent rule 1bn=b-n.
y-6=x212⋅1812-18⋅18-12212
Step 2.3.1.3.3
Multiply 18 by 18-12 by adding the exponents.
Step 2.3.1.3.3.1
Multiply 18 by 18-12.
Step 2.3.1.3.3.1.1
Raise 18 to the power of 1.
y-6=x212⋅1812-181⋅18-12212
Step 2.3.1.3.3.1.2
Use the power rule aman=am+n to combine exponents.
y-6=x212⋅1812-181-12212
y-6=x212⋅1812-181-12212
Step 2.3.1.3.3.2
Write 1 as a fraction with a common denominator.
y-6=x212⋅1812-1822-12212
Step 2.3.1.3.3.3
Combine the numerators over the common denominator.
y-6=x212⋅1812-182-12212
Step 2.3.1.3.3.4
Subtract 1 from 2.
y-6=x212⋅1812-1812212
y-6=x212⋅1812-1812212
Step 2.3.1.3.4
Use the power of quotient rule ambm=(ab)m.
y-6=x212⋅1812-(182)12
Step 2.3.1.3.5
Divide 18 by 2.
y-6=x212⋅1812-912
Step 2.3.1.3.6
Rewrite 9 as 32.
y-6=x212⋅1812-(32)12
Step 2.3.1.3.7
Apply the power rule and multiply exponents, (am)n=amn.
y-6=x212⋅1812-32(12)
Step 2.3.1.3.8
Cancel the common factor of 2.
Step 2.3.1.3.8.1
Cancel the common factor.
y-6=x212⋅1812-32(12)
Step 2.3.1.3.8.2
Rewrite the expression.
y-6=x212⋅1812-31
y-6=x212⋅1812-31
Step 2.3.1.3.9
Evaluate the exponent.
y-6=x212⋅1812-1⋅3
Step 2.3.1.3.10
Multiply -1 by 3.
y-6=x212⋅1812-3
y-6=x212⋅1812-3
y-6=x212⋅1812-3
Step 2.3.2
Move all terms not containing y to the right side of the equation.
Step 2.3.2.1
Add 6 to both sides of the equation.
y=x212⋅1812-3+6
Step 2.3.2.2
Add -3 and 6.
y=x212⋅1812+3
y=x212⋅1812+3
Step 2.3.3
Reorder terms.
y=1212⋅1812x+3
y=1212⋅1812x+3
y=1212⋅1812x+3
Step 3