Calculus Examples

Find the Tangent Line at (8,4) y = square root of 2x at (8,4)
y=2xy=2x at (8,4)(8,4)
Step 1
Find the first derivative and evaluate at x=8x=8 and y=4y=4 to find the slope of the tangent line.
Tap for more steps...
Step 1.1
Simplify with factoring out.
Tap for more steps...
Step 1.1.1
Use nax=axnnax=axn to rewrite 2x2x as (2x)12(2x)12.
ddx[(2x)12]ddx[(2x)12]
Step 1.1.2
Factor 22 out of 2x2x.
ddx[(2(x))12]ddx[(2(x))12]
Step 1.1.3
Apply the product rule to 2(x)2(x).
ddx[212x12]ddx[212x12]
ddx[212x12]ddx[212x12]
Step 1.2
Since 212212 is constant with respect to xx, the derivative of 212x12212x12 with respect to xx is 212ddx[x12]212ddx[x12].
212ddx[x12]212ddx[x12]
Step 1.3
Differentiate using the Power Rule which states that ddx[xn]ddx[xn] is nxn-1nxn1 where n=12n=12.
212(12x12-1)212(12x121)
Step 1.4
To write -11 as a fraction with a common denominator, multiply by 2222.
212(12x12-122)212(12x12122)
Step 1.5
Combine -11 and 2222.
212(12x12+-122)212(12x12+122)
Step 1.6
Combine the numerators over the common denominator.
212(12x1-122)212(12x1122)
Step 1.7
Simplify the numerator.
Tap for more steps...
Step 1.7.1
Multiply -11 by 22.
212(12x1-22)212(12x122)
Step 1.7.2
Subtract 22 from 11.
212(12x-12)212(12x12)
212(12x-12)212(12x12)
Step 1.8
Move the negative in front of the fraction.
212(12x-12)212(12x12)
Step 1.9
Combine 1212 and x-12x12.
212x-122212x122
Step 1.10
Combine 212212 and x-122x122.
212x-122212x122
Step 1.11
Simplify the expression.
Tap for more steps...
Step 1.11.1
Move 212212 to the denominator using the negative exponent rule bn=1b-nbn=1bn.
x-1222-12x122212
Step 1.11.2
Move x-12x12 to the denominator using the negative exponent rule b-n=1bnbn=1bn.
122-12x1212212x12
122-12x1212212x12
Step 1.12
Multiply 22 by 2-12212 by adding the exponents.
Tap for more steps...
Step 1.12.1
Multiply 22 by 2-12212.
Tap for more steps...
Step 1.12.1.1
Raise 22 to the power of 11.
1212-12x12121212x12
Step 1.12.1.2
Use the power rule aman=am+naman=am+n to combine exponents.
121-12x1212112x12
121-12x1212112x12
Step 1.12.2
Write 11 as a fraction with a common denominator.
1222-12x12122212x12
Step 1.12.3
Combine the numerators over the common denominator.
122-12x1212212x12
Step 1.12.4
Subtract 11 from 22.
1212x121212x12
1212x121212x12
Step 1.13
Evaluate the derivative at x=8x=8.
1212(8)121212(8)12
Step 1.14
Simplify.
Tap for more steps...
Step 1.14.1
Simplify the denominator.
Tap for more steps...
Step 1.14.1.1
Rewrite 88 as 2323.
1212(23)121212(23)12
Step 1.14.1.2
Multiply the exponents in (23)12(23)12.
Tap for more steps...
Step 1.14.1.2.1
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
121223(12)121223(12)
Step 1.14.1.2.2
Combine 33 and 1212.
12122321212232
12122321212232
Step 1.14.1.3
Use the power rule aman=am+naman=am+n to combine exponents.
1212+321212+32
Step 1.14.1.4
Combine the numerators over the common denominator.
121+32121+32
Step 1.14.1.5
Add 11 and 33.
12421242
Step 1.14.1.6
Cancel the common factor of 44 and 22.
Tap for more steps...
Step 1.14.1.6.1
Factor 22 out of 44.
1222212222
Step 1.14.1.6.2
Cancel the common factors.
Tap for more steps...
Step 1.14.1.6.2.1
Factor 22 out of 22.
12222(1)12222(1)
Step 1.14.1.6.2.2
Cancel the common factor.
122221
Step 1.14.1.6.2.3
Rewrite the expression.
1221
Step 1.14.1.6.2.4
Divide 2 by 1.
122
122
122
122
Step 1.14.2
Raise 2 to the power of 2.
14
14
14
Step 2
Plug the slope and point values into the point-slope formula and solve for y.
Tap for more steps...
Step 2.1
Use the slope 14 and a given point (8,4) to substitute for x1 and y1 in the point-slope form y-y1=m(x-x1), which is derived from the slope equation m=y2-y1x2-x1.
y-(4)=14(x-(8))
Step 2.2
Simplify the equation and keep it in point-slope form.
y-4=14(x-8)
Step 2.3
Solve for y.
Tap for more steps...
Step 2.3.1
Simplify 14(x-8).
Tap for more steps...
Step 2.3.1.1
Rewrite.
y-4=0+0+14(x-8)
Step 2.3.1.2
Simplify by adding zeros.
y-4=14(x-8)
Step 2.3.1.3
Apply the distributive property.
y-4=14x+14-8
Step 2.3.1.4
Combine 14 and x.
y-4=x4+14-8
Step 2.3.1.5
Cancel the common factor of 4.
Tap for more steps...
Step 2.3.1.5.1
Factor 4 out of -8.
y-4=x4+14(4(-2))
Step 2.3.1.5.2
Cancel the common factor.
y-4=x4+14(4-2)
Step 2.3.1.5.3
Rewrite the expression.
y-4=x4-2
y-4=x4-2
y-4=x4-2
Step 2.3.2
Move all terms not containing y to the right side of the equation.
Tap for more steps...
Step 2.3.2.1
Add 4 to both sides of the equation.
y=x4-2+4
Step 2.3.2.2
Add -2 and 4.
y=x4+2
y=x4+2
Step 2.3.3
Reorder terms.
y=14x+2
y=14x+2
y=14x+2
Step 3
 [x2  12  π  xdx ]