Enter a problem...
Calculus Examples
y=√2xy=√2x at (8,4)(8,4)
Step 1
Step 1.1
Simplify with factoring out.
Step 1.1.1
Use n√ax=axnn√ax=axn to rewrite √2x√2x as (2x)12(2x)12.
ddx[(2x)12]ddx[(2x)12]
Step 1.1.2
Factor 22 out of 2x2x.
ddx[(2(x))12]ddx[(2(x))12]
Step 1.1.3
Apply the product rule to 2(x)2(x).
ddx[212x12]ddx[212x12]
ddx[212x12]ddx[212x12]
Step 1.2
Since 212212 is constant with respect to xx, the derivative of 212x12212x12 with respect to xx is 212ddx[x12]212ddx[x12].
212ddx[x12]212ddx[x12]
Step 1.3
Differentiate using the Power Rule which states that ddx[xn]ddx[xn] is nxn-1nxn−1 where n=12n=12.
212(12x12-1)212(12x12−1)
Step 1.4
To write -1−1 as a fraction with a common denominator, multiply by 2222.
212(12x12-1⋅22)212(12x12−1⋅22)
Step 1.5
Combine -1−1 and 2222.
212(12x12+-1⋅22)212(12x12+−1⋅22)
Step 1.6
Combine the numerators over the common denominator.
212(12x1-1⋅22)212(12x1−1⋅22)
Step 1.7
Simplify the numerator.
Step 1.7.1
Multiply -1−1 by 22.
212(12x1-22)212(12x1−22)
Step 1.7.2
Subtract 22 from 11.
212(12x-12)212(12x−12)
212(12x-12)212(12x−12)
Step 1.8
Move the negative in front of the fraction.
212(12x-12)212(12x−12)
Step 1.9
Combine 1212 and x-12x−12.
212x-122212x−122
Step 1.10
Combine 212212 and x-122x−122.
212x-122212x−122
Step 1.11
Simplify the expression.
Step 1.11.1
Move 212212 to the denominator using the negative exponent rule bn=1b-nbn=1b−n.
x-122⋅2-12x−122⋅2−12
Step 1.11.2
Move x-12x−12 to the denominator using the negative exponent rule b-n=1bnb−n=1bn.
12⋅2-12x1212⋅2−12x12
12⋅2-12x1212⋅2−12x12
Step 1.12
Multiply 22 by 2-122−12 by adding the exponents.
Step 1.12.1
Multiply 22 by 2-122−12.
Step 1.12.1.1
Raise 22 to the power of 11.
121⋅2-12x12121⋅2−12x12
Step 1.12.1.2
Use the power rule aman=am+naman=am+n to combine exponents.
121-12x12121−12x12
121-12x12121−12x12
Step 1.12.2
Write 11 as a fraction with a common denominator.
1222-12x121222−12x12
Step 1.12.3
Combine the numerators over the common denominator.
122-12x12122−12x12
Step 1.12.4
Subtract 11 from 22.
1212x121212x12
1212x121212x12
Step 1.13
Evaluate the derivative at x=8x=8.
1212(8)121212(8)12
Step 1.14
Simplify.
Step 1.14.1
Simplify the denominator.
Step 1.14.1.1
Rewrite 88 as 2323.
1212⋅(23)121212⋅(23)12
Step 1.14.1.2
Multiply the exponents in (23)12(23)12.
Step 1.14.1.2.1
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
1212⋅23(12)1212⋅23(12)
Step 1.14.1.2.2
Combine 33 and 1212.
1212⋅2321212⋅232
1212⋅2321212⋅232
Step 1.14.1.3
Use the power rule aman=am+naman=am+n to combine exponents.
1212+321212+32
Step 1.14.1.4
Combine the numerators over the common denominator.
121+32121+32
Step 1.14.1.5
Add 11 and 33.
12421242
Step 1.14.1.6
Cancel the common factor of 44 and 22.
Step 1.14.1.6.1
Factor 22 out of 44.
122⋅22122⋅22
Step 1.14.1.6.2
Cancel the common factors.
Step 1.14.1.6.2.1
Factor 22 out of 22.
122⋅22(1)122⋅22(1)
Step 1.14.1.6.2.2
Cancel the common factor.
122⋅22⋅1
Step 1.14.1.6.2.3
Rewrite the expression.
1221
Step 1.14.1.6.2.4
Divide 2 by 1.
122
122
122
122
Step 1.14.2
Raise 2 to the power of 2.
14
14
14
Step 2
Step 2.1
Use the slope 14 and a given point (8,4) to substitute for x1 and y1 in the point-slope form y-y1=m(x-x1), which is derived from the slope equation m=y2-y1x2-x1.
y-(4)=14⋅(x-(8))
Step 2.2
Simplify the equation and keep it in point-slope form.
y-4=14⋅(x-8)
Step 2.3
Solve for y.
Step 2.3.1
Simplify 14⋅(x-8).
Step 2.3.1.1
Rewrite.
y-4=0+0+14⋅(x-8)
Step 2.3.1.2
Simplify by adding zeros.
y-4=14⋅(x-8)
Step 2.3.1.3
Apply the distributive property.
y-4=14x+14⋅-8
Step 2.3.1.4
Combine 14 and x.
y-4=x4+14⋅-8
Step 2.3.1.5
Cancel the common factor of 4.
Step 2.3.1.5.1
Factor 4 out of -8.
y-4=x4+14⋅(4(-2))
Step 2.3.1.5.2
Cancel the common factor.
y-4=x4+14⋅(4⋅-2)
Step 2.3.1.5.3
Rewrite the expression.
y-4=x4-2
y-4=x4-2
y-4=x4-2
Step 2.3.2
Move all terms not containing y to the right side of the equation.
Step 2.3.2.1
Add 4 to both sides of the equation.
y=x4-2+4
Step 2.3.2.2
Add -2 and 4.
y=x4+2
y=x4+2
Step 2.3.3
Reorder terms.
y=14x+2
y=14x+2
y=14x+2
Step 3