Enter a problem...
Calculus Examples
f(x)=√3x+16 , (3,5)
Step 1
Step 1.1
Use n√ax=axn to rewrite √3x+16 as (3x+16)12.
ddx[(3x+16)12]
Step 1.2
Differentiate using the chain rule, which states that ddx[f(g(x))] is f′(g(x))g′(x) where f(x)=x12 and g(x)=3x+16.
Step 1.2.1
To apply the Chain Rule, set u as 3x+16.
ddu[u12]ddx[3x+16]
Step 1.2.2
Differentiate using the Power Rule which states that ddu[un] is nun-1 where n=12.
12u12-1ddx[3x+16]
Step 1.2.3
Replace all occurrences of u with 3x+16.
12(3x+16)12-1ddx[3x+16]
12(3x+16)12-1ddx[3x+16]
Step 1.3
To write -1 as a fraction with a common denominator, multiply by 22.
12(3x+16)12-1⋅22ddx[3x+16]
Step 1.4
Combine -1 and 22.
12(3x+16)12+-1⋅22ddx[3x+16]
Step 1.5
Combine the numerators over the common denominator.
12(3x+16)1-1⋅22ddx[3x+16]
Step 1.6
Simplify the numerator.
Step 1.6.1
Multiply -1 by 2.
12(3x+16)1-22ddx[3x+16]
Step 1.6.2
Subtract 2 from 1.
12(3x+16)-12ddx[3x+16]
12(3x+16)-12ddx[3x+16]
Step 1.7
Combine fractions.
Step 1.7.1
Move the negative in front of the fraction.
12(3x+16)-12ddx[3x+16]
Step 1.7.2
Combine 12 and (3x+16)-12.
(3x+16)-122ddx[3x+16]
Step 1.7.3
Move (3x+16)-12 to the denominator using the negative exponent rule b-n=1bn.
12(3x+16)12ddx[3x+16]
12(3x+16)12ddx[3x+16]
Step 1.8
By the Sum Rule, the derivative of 3x+16 with respect to x is ddx[3x]+ddx[16].
12(3x+16)12(ddx[3x]+ddx[16])
Step 1.9
Since 3 is constant with respect to x, the derivative of 3x with respect to x is 3ddx[x].
12(3x+16)12(3ddx[x]+ddx[16])
Step 1.10
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=1.
12(3x+16)12(3⋅1+ddx[16])
Step 1.11
Multiply 3 by 1.
12(3x+16)12(3+ddx[16])
Step 1.12
Since 16 is constant with respect to x, the derivative of 16 with respect to x is 0.
12(3x+16)12(3+0)
Step 1.13
Combine fractions.
Step 1.13.1
Add 3 and 0.
12(3x+16)12⋅3
Step 1.13.2
Combine 12(3x+16)12 and 3.
32(3x+16)12
32(3x+16)12
Step 1.14
Evaluate the derivative at x=3.
32(3(3)+16)12
Step 1.15
Simplify.
Step 1.15.1
Simplify the denominator.
Step 1.15.1.1
Multiply 3 by 3.
32(9+16)12
Step 1.15.1.2
Add 9 and 16.
32⋅2512
Step 1.15.1.3
Rewrite 25 as 52.
32⋅(52)12
Step 1.15.1.4
Apply the power rule and multiply exponents, (am)n=amn.
32⋅52(12)
Step 1.15.1.5
Cancel the common factor of 2.
Step 1.15.1.5.1
Cancel the common factor.
32⋅52(12)
Step 1.15.1.5.2
Rewrite the expression.
32⋅51
32⋅51
Step 1.15.1.6
Evaluate the exponent.
32⋅5
32⋅5
Step 1.15.2
Multiply 2 by 5.
310
310
310
Step 2
Step 2.1
Use the slope 310 and a given point (3,5) to substitute for x1 and y1 in the point-slope form y-y1=m(x-x1), which is derived from the slope equation m=y2-y1x2-x1.
y-(5)=310⋅(x-(3))
Step 2.2
Simplify the equation and keep it in point-slope form.
y-5=310⋅(x-3)
Step 2.3
Solve for y.
Step 2.3.1
Simplify 310⋅(x-3).
Step 2.3.1.1
Rewrite.
y-5=0+0+310⋅(x-3)
Step 2.3.1.2
Simplify by adding zeros.
y-5=310⋅(x-3)
Step 2.3.1.3
Apply the distributive property.
y-5=310x+310⋅-3
Step 2.3.1.4
Combine 310 and x.
y-5=3x10+310⋅-3
Step 2.3.1.5
Multiply 310⋅-3.
Step 2.3.1.5.1
Combine 310 and -3.
y-5=3x10+3⋅-310
Step 2.3.1.5.2
Multiply 3 by -3.
y-5=3x10+-910
y-5=3x10+-910
Step 2.3.1.6
Move the negative in front of the fraction.
y-5=3x10-910
y-5=3x10-910
Step 2.3.2
Move all terms not containing y to the right side of the equation.
Step 2.3.2.1
Add 5 to both sides of the equation.
y=3x10-910+5
Step 2.3.2.2
To write 5 as a fraction with a common denominator, multiply by 1010.
y=3x10-910+5⋅1010
Step 2.3.2.3
Combine 5 and 1010.
y=3x10-910+5⋅1010
Step 2.3.2.4
Combine the numerators over the common denominator.
y=3x10+-9+5⋅1010
Step 2.3.2.5
Simplify the numerator.
Step 2.3.2.5.1
Multiply 5 by 10.
y=3x10+-9+5010
Step 2.3.2.5.2
Add -9 and 50.
y=3x10+4110
y=3x10+4110
y=3x10+4110
Step 2.3.3
Reorder terms.
y=310x+4110
y=310x+4110
y=310x+4110
Step 3