Calculus Examples

Find the Tangent Line at (2,1) 2(x^2+y^2)^2=25xy^2 ; (2,1)
2(x2+y2)2=25xy22(x2+y2)2=25xy2 ; (2,1)
Step 1
Find the first derivative and evaluate at x=2 and y=1 to find the slope of the tangent line.
Tap for more steps...
Step 1.1
Differentiate both sides of the equation.
ddx(2(x2+y2)2)=ddx(25xy2)
Step 1.2
Differentiate the left side of the equation.
Tap for more steps...
Step 1.2.1
Since 2 is constant with respect to x, the derivative of 2(x2+y2)2 with respect to x is 2ddx[(x2+y2)2].
2ddx[(x2+y2)2]
Step 1.2.2
Differentiate using the chain rule, which states that ddx[f(g(x))] is f(g(x))g(x) where f(x)=x2 and g(x)=x2+y2.
Tap for more steps...
Step 1.2.2.1
To apply the Chain Rule, set u1 as x2+y2.
2(ddu1[u12]ddx[x2+y2])
Step 1.2.2.2
Differentiate using the Power Rule which states that ddu1[u1n] is nu1n-1 where n=2.
2(2u1ddx[x2+y2])
Step 1.2.2.3
Replace all occurrences of u1 with x2+y2.
2(2(x2+y2)ddx[x2+y2])
2(2(x2+y2)ddx[x2+y2])
Step 1.2.3
Differentiate.
Tap for more steps...
Step 1.2.3.1
Multiply 2 by 2.
4((x2+y2)ddx[x2+y2])
Step 1.2.3.2
By the Sum Rule, the derivative of x2+y2 with respect to x is ddx[x2]+ddx[y2].
4(x2+y2)(ddx[x2]+ddx[y2])
Step 1.2.3.3
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=2.
4(x2+y2)(2x+ddx[y2])
4(x2+y2)(2x+ddx[y2])
Step 1.2.4
Differentiate using the chain rule, which states that ddx[f(g(x))] is f(g(x))g(x) where f(x)=x2 and g(x)=y.
Tap for more steps...
Step 1.2.4.1
To apply the Chain Rule, set u2 as y.
4(x2+y2)(2x+ddu2[u22]ddx[y])
Step 1.2.4.2
Differentiate using the Power Rule which states that ddu2[u2n] is nu2n-1 where n=2.
4(x2+y2)(2x+2u2ddx[y])
Step 1.2.4.3
Replace all occurrences of u2 with y.
4(x2+y2)(2x+2yddx[y])
4(x2+y2)(2x+2yddx[y])
Step 1.2.5
Rewrite ddx[y] as y.
4(x2+y2)(2x+2yy)
Step 1.2.6
Simplify.
Tap for more steps...
Step 1.2.6.1
Apply the distributive property.
(4x2+4y2)(2x+2yy)
Step 1.2.6.2
Reorder the factors of (4x2+4y2)(2x+2yy).
(2x+2yy)(4x2+4y2)
(2x+2yy)(4x2+4y2)
(2x+2yy)(4x2+4y2)
Step 1.3
Differentiate the right side of the equation.
Tap for more steps...
Step 1.3.1
Since 25 is constant with respect to x, the derivative of 25xy2 with respect to x is 25ddx[xy2].
25ddx[xy2]
Step 1.3.2
Differentiate using the Product Rule which states that ddx[f(x)g(x)] is f(x)ddx[g(x)]+g(x)ddx[f(x)] where f(x)=x and g(x)=y2.
25(xddx[y2]+y2ddx[x])
Step 1.3.3
Differentiate using the chain rule, which states that ddx[f(g(x))] is f(g(x))g(x) where f(x)=x2 and g(x)=y.
Tap for more steps...
Step 1.3.3.1
To apply the Chain Rule, set u as y.
25(x(ddu[u2]ddx[y])+y2ddx[x])
Step 1.3.3.2
Differentiate using the Power Rule which states that ddu[un] is nun-1 where n=2.
25(x(2uddx[y])+y2ddx[x])
Step 1.3.3.3
Replace all occurrences of u with y.
25(x(2yddx[y])+y2ddx[x])
25(x(2yddx[y])+y2ddx[x])
Step 1.3.4
Move 2 to the left of x.
25(2xyddx[y]+y2ddx[x])
Step 1.3.5
Rewrite ddx[y] as y.
25(2xyy+y2ddx[x])
Step 1.3.6
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=1.
25(2xyy+y21)
Step 1.3.7
Multiply y2 by 1.
25(2xyy+y2)
Step 1.3.8
Simplify.
Tap for more steps...
Step 1.3.8.1
Apply the distributive property.
25(2xyy)+25y2
Step 1.3.8.2
Multiply 2 by 25.
50xyy+25y2
Step 1.3.8.3
Reorder terms.
25y2+50xyy
25y2+50xyy
25y2+50xyy
Step 1.4
Reform the equation by setting the left side equal to the right side.
(2x+2yy)(4x2+4y2)=25y2+50xyy
Step 1.5
Solve for y.
Tap for more steps...
Step 1.5.1
Simplify (2x+2yy)(4x2+4y2).
Tap for more steps...
Step 1.5.1.1
Rewrite.
0+0+(2x+2yy)(4x2+4y2)=25y2+50xyy
Step 1.5.1.2
Simplify by adding zeros.
(2x+2yy)(4x2+4y2)=25y2+50xyy
Step 1.5.1.3
Expand (2x+2yy)(4x2+4y2) using the FOIL Method.
Tap for more steps...
Step 1.5.1.3.1
Apply the distributive property.
2x(4x2+4y2)+2yy(4x2+4y2)=25y2+50xyy
Step 1.5.1.3.2
Apply the distributive property.
2x(4x2)+2x(4y2)+2yy(4x2+4y2)=25y2+50xyy
Step 1.5.1.3.3
Apply the distributive property.
2x(4x2)+2x(4y2)+2yy(4x2)+2yy(4y2)=25y2+50xyy
2x(4x2)+2x(4y2)+2yy(4x2)+2yy(4y2)=25y2+50xyy
Step 1.5.1.4
Simplify each term.
Tap for more steps...
Step 1.5.1.4.1
Rewrite using the commutative property of multiplication.
24xx2+2x(4y2)+2yy(4x2)+2yy(4y2)=25y2+50xyy
Step 1.5.1.4.2
Multiply x by x2 by adding the exponents.
Tap for more steps...
Step 1.5.1.4.2.1
Move x2.
24(x2x)+2x(4y2)+2yy(4x2)+2yy(4y2)=25y2+50xyy
Step 1.5.1.4.2.2
Multiply x2 by x.
Tap for more steps...
Step 1.5.1.4.2.2.1
Raise x to the power of 1.
24(x2x1)+2x(4y2)+2yy(4x2)+2yy(4y2)=25y2+50xyy
Step 1.5.1.4.2.2.2
Use the power rule aman=am+n to combine exponents.
24x2+1+2x(4y2)+2yy(4x2)+2yy(4y2)=25y2+50xyy
24x2+1+2x(4y2)+2yy(4x2)+2yy(4y2)=25y2+50xyy
Step 1.5.1.4.2.3
Add 2 and 1.
24x3+2x(4y2)+2yy(4x2)+2yy(4y2)=25y2+50xyy
24x3+2x(4y2)+2yy(4x2)+2yy(4y2)=25y2+50xyy
Step 1.5.1.4.3
Multiply 2 by 4.
8x3+2x(4y2)+2yy(4x2)+2yy(4y2)=25y2+50xyy
Step 1.5.1.4.4
Rewrite using the commutative property of multiplication.
8x3+24xy2+2yy(4x2)+2yy(4y2)=25y2+50xyy
Step 1.5.1.4.5
Multiply 2 by 4.
8x3+8xy2+2yy(4x2)+2yy(4y2)=25y2+50xyy
Step 1.5.1.4.6
Multiply 4 by 2.
8x3+8xy2+8yyx2+2yy(4y2)=25y2+50xyy
Step 1.5.1.4.7
Multiply y by y2 by adding the exponents.
Tap for more steps...
Step 1.5.1.4.7.1
Move y2.
8x3+8xy2+8yyx2+2(y2y)y4=25y2+50xyy
Step 1.5.1.4.7.2
Multiply y2 by y.
Tap for more steps...
Step 1.5.1.4.7.2.1
Raise y to the power of 1.
8x3+8xy2+8yyx2+2(y2y1)y4=25y2+50xyy
Step 1.5.1.4.7.2.2
Use the power rule aman=am+n to combine exponents.
8x3+8xy2+8yyx2+2y2+1y4=25y2+50xyy
8x3+8xy2+8yyx2+2y2+1y4=25y2+50xyy
Step 1.5.1.4.7.3
Add 2 and 1.
8x3+8xy2+8yyx2+2y3y4=25y2+50xyy
8x3+8xy2+8yyx2+2y3y4=25y2+50xyy
Step 1.5.1.4.8
Multiply 4 by 2.
8x3+8xy2+8yyx2+8y3y=25y2+50xyy
8x3+8xy2+8yyx2+8y3y=25y2+50xyy
8x3+8xy2+8yyx2+8y3y=25y2+50xyy
Step 1.5.2
Subtract 50xyy from both sides of the equation.
8x3+8xy2+8yyx2+8y3y-50xyy=25y2
Step 1.5.3
Move all terms not containing y to the right side of the equation.
Tap for more steps...
Step 1.5.3.1
Subtract 8x3 from both sides of the equation.
8xy2+8yyx2+8y3y-50xyy=25y2-8x3
Step 1.5.3.2
Subtract 8xy2 from both sides of the equation.
8yyx2+8y3y-50xyy=25y2-8x3-8xy2
8yyx2+8y3y-50xyy=25y2-8x3-8xy2
Step 1.5.4
Factor 2yy out of 8yyx2+8y3y-50xyy.
Tap for more steps...
Step 1.5.4.1
Factor 2yy out of 8yyx2.
2yy(4x2)+8y3y-50xyy=25y2-8x3-8xy2
Step 1.5.4.2
Factor 2yy out of 8y3y.
2yy(4x2)+2yy(4y2)-50xyy=25y2-8x3-8xy2
Step 1.5.4.3
Factor 2yy out of -50xyy.
2yy(4x2)+2yy(4y2)+2yy(-25x)=25y2-8x3-8xy2
Step 1.5.4.4
Factor 2yy out of 2yy(4x2)+2yy(4y2).
2yy(4x2+4y2)+2yy(-25x)=25y2-8x3-8xy2
Step 1.5.4.5
Factor 2yy out of 2yy(4x2+4y2)+2yy(-25x).
2yy(4x2+4y2-25x)=25y2-8x3-8xy2
2yy(4x2+4y2-25x)=25y2-8x3-8xy2
Step 1.5.5
Divide each term in 2yy(4x2+4y2-25x)=25y2-8x3-8xy2 by 2y(4x2+4y2-25x) and simplify.
Tap for more steps...
Step 1.5.5.1
Divide each term in 2yy(4x2+4y2-25x)=25y2-8x3-8xy2 by 2y(4x2+4y2-25x).
2yy(4x2+4y2-25x)2y(4x2+4y2-25x)=25y22y(4x2+4y2-25x)+-8x32y(4x2+4y2-25x)+-8xy22y(4x2+4y2-25x)
Step 1.5.5.2
Simplify the left side.
Tap for more steps...
Step 1.5.5.2.1
Cancel the common factor of 2.
Tap for more steps...
Step 1.5.5.2.1.1
Cancel the common factor.
2yy(4x2+4y2-25x)2y(4x2+4y2-25x)=25y22y(4x2+4y2-25x)+-8x32y(4x2+4y2-25x)+-8xy22y(4x2+4y2-25x)
Step 1.5.5.2.1.2
Rewrite the expression.
yy(4x2+4y2-25x)y(4x2+4y2-25x)=25y22y(4x2+4y2-25x)+-8x32y(4x2+4y2-25x)+-8xy22y(4x2+4y2-25x)
yy(4x2+4y2-25x)y(4x2+4y2-25x)=25y22y(4x2+4y2-25x)+-8x32y(4x2+4y2-25x)+-8xy22y(4x2+4y2-25x)
Step 1.5.5.2.2
Cancel the common factor of y.
Tap for more steps...
Step 1.5.5.2.2.1
Cancel the common factor.
yy(4x2+4y2-25x)y(4x2+4y2-25x)=25y22y(4x2+4y2-25x)+-8x32y(4x2+4y2-25x)+-8xy22y(4x2+4y2-25x)
Step 1.5.5.2.2.2
Rewrite the expression.
y(4x2+4y2-25x)4x2+4y2-25x=25y22y(4x2+4y2-25x)+-8x32y(4x2+4y2-25x)+-8xy22y(4x2+4y2-25x)
y(4x2+4y2-25x)4x2+4y2-25x=25y22y(4x2+4y2-25x)+-8x32y(4x2+4y2-25x)+-8xy22y(4x2+4y2-25x)
Step 1.5.5.2.3
Cancel the common factor of 4x2+4y2-25x.
Tap for more steps...
Step 1.5.5.2.3.1
Cancel the common factor.
y(4x2+4y2-25x)4x2+4y2-25x=25y22y(4x2+4y2-25x)+-8x32y(4x2+4y2-25x)+-8xy22y(4x2+4y2-25x)
Step 1.5.5.2.3.2
Divide y by 1.
y=25y22y(4x2+4y2-25x)+-8x32y(4x2+4y2-25x)+-8xy22y(4x2+4y2-25x)
y=25y22y(4x2+4y2-25x)+-8x32y(4x2+4y2-25x)+-8xy22y(4x2+4y2-25x)
y=25y22y(4x2+4y2-25x)+-8x32y(4x2+4y2-25x)+-8xy22y(4x2+4y2-25x)
Step 1.5.5.3
Simplify the right side.
Tap for more steps...
Step 1.5.5.3.1
Simplify each term.
Tap for more steps...
Step 1.5.5.3.1.1
Cancel the common factor of y2 and y.
Tap for more steps...
Step 1.5.5.3.1.1.1
Factor y out of 25y2.
y=y(25y)2y(4x2+4y2-25x)+-8x32y(4x2+4y2-25x)+-8xy22y(4x2+4y2-25x)
Step 1.5.5.3.1.1.2
Cancel the common factors.
Tap for more steps...
Step 1.5.5.3.1.1.2.1
Factor y out of 2y(4x2+4y2-25x).
y=y(25y)y(2(4x2+4y2-25x))+-8x32y(4x2+4y2-25x)+-8xy22y(4x2+4y2-25x)
Step 1.5.5.3.1.1.2.2
Cancel the common factor.
y=y(25y)y(2(4x2+4y2-25x))+-8x32y(4x2+4y2-25x)+-8xy22y(4x2+4y2-25x)
Step 1.5.5.3.1.1.2.3
Rewrite the expression.
y=25y2(4x2+4y2-25x)+-8x32y(4x2+4y2-25x)+-8xy22y(4x2+4y2-25x)
y=25y2(4x2+4y2-25x)+-8x32y(4x2+4y2-25x)+-8xy22y(4x2+4y2-25x)
y=25y2(4x2+4y2-25x)+-8x32y(4x2+4y2-25x)+-8xy22y(4x2+4y2-25x)
Step 1.5.5.3.1.2
Cancel the common factor of -8 and 2.
Tap for more steps...
Step 1.5.5.3.1.2.1
Factor 2 out of -8x3.
y=25y2(4x2+4y2-25x)+2(-4x3)2y(4x2+4y2-25x)+-8xy22y(4x2+4y2-25x)
Step 1.5.5.3.1.2.2
Cancel the common factors.
Tap for more steps...
Step 1.5.5.3.1.2.2.1
Factor 2 out of 2y(4x2+4y2-25x).
y=25y2(4x2+4y2-25x)+2(-4x3)2(y(4x2+4y2-25x))+-8xy22y(4x2+4y2-25x)
Step 1.5.5.3.1.2.2.2
Cancel the common factor.
y=25y2(4x2+4y2-25x)+2(-4x3)2(y(4x2+4y2-25x))+-8xy22y(4x2+4y2-25x)
Step 1.5.5.3.1.2.2.3
Rewrite the expression.
y=25y2(4x2+4y2-25x)+-4x3y(4x2+4y2-25x)+-8xy22y(4x2+4y2-25x)
y=25y2(4x2+4y2-25x)+-4x3y(4x2+4y2-25x)+-8xy22y(4x2+4y2-25x)
y=25y2(4x2+4y2-25x)+-4x3y(4x2+4y2-25x)+-8xy22y(4x2+4y2-25x)
Step 1.5.5.3.1.3
Move the negative in front of the fraction.
y=25y2(4x2+4y2-25x)-4x3y(4x2+4y2-25x)+-8xy22y(4x2+4y2-25x)
Step 1.5.5.3.1.4
Cancel the common factor of -8 and 2.
Tap for more steps...
Step 1.5.5.3.1.4.1
Factor 2 out of -8xy2.
y=25y2(4x2+4y2-25x)-4x3y(4x2+4y2-25x)+2(-4xy2)2y(4x2+4y2-25x)
Step 1.5.5.3.1.4.2
Cancel the common factors.
Tap for more steps...
Step 1.5.5.3.1.4.2.1
Factor 2 out of 2y(4x2+4y2-25x).
y=25y2(4x2+4y2-25x)-4x3y(4x2+4y2-25x)+2(-4xy2)2(y(4x2+4y2-25x))
Step 1.5.5.3.1.4.2.2
Cancel the common factor.
y=25y2(4x2+4y2-25x)-4x3y(4x2+4y2-25x)+2(-4xy2)2(y(4x2+4y2-25x))
Step 1.5.5.3.1.4.2.3
Rewrite the expression.
y=25y2(4x2+4y2-25x)-4x3y(4x2+4y2-25x)+-4xy2y(4x2+4y2-25x)
y=25y2(4x2+4y2-25x)-4x3y(4x2+4y2-25x)+-4xy2y(4x2+4y2-25x)
y=25y2(4x2+4y2-25x)-4x3y(4x2+4y2-25x)+-4xy2y(4x2+4y2-25x)
Step 1.5.5.3.1.5
Cancel the common factor of y2 and y.
Tap for more steps...
Step 1.5.5.3.1.5.1
Factor y out of -4xy2.
y=25y2(4x2+4y2-25x)-4x3y(4x2+4y2-25x)+y(-4xy)y(4x2+4y2-25x)
Step 1.5.5.3.1.5.2
Cancel the common factors.
Tap for more steps...
Step 1.5.5.3.1.5.2.1
Cancel the common factor.
y=25y2(4x2+4y2-25x)-4x3y(4x2+4y2-25x)+y(-4xy)y(4x2+4y2-25x)
Step 1.5.5.3.1.5.2.2
Rewrite the expression.
y=25y2(4x2+4y2-25x)-4x3y(4x2+4y2-25x)+-4xy4x2+4y2-25x
y=25y2(4x2+4y2-25x)-4x3y(4x2+4y2-25x)+-4xy4x2+4y2-25x
y=25y2(4x2+4y2-25x)-4x3y(4x2+4y2-25x)+-4xy4x2+4y2-25x
Step 1.5.5.3.1.6
Move the negative in front of the fraction.
y=25y2(4x2+4y2-25x)-4x3y(4x2+4y2-25x)-4xy4x2+4y2-25x
y=25y2(4x2+4y2-25x)-4x3y(4x2+4y2-25x)-4xy4x2+4y2-25x
Step 1.5.5.3.2
To write -4xy4x2+4y2-25x as a fraction with a common denominator, multiply by 22.
y=-4x3y(4x2+4y2-25x)+25y2(4x2+4y2-25x)-4xy4x2+4y2-25x22
Step 1.5.5.3.3
Write each expression with a common denominator of 2(4x2+4y2-25x), by multiplying each by an appropriate factor of 1.
Tap for more steps...
Step 1.5.5.3.3.1
Multiply 4xy4x2+4y2-25x by 22.
y=-4x3y(4x2+4y2-25x)+25y2(4x2+4y2-25x)-4xy2(4x2+4y2-25x)2
Step 1.5.5.3.3.2
Reorder the factors of (4x2+4y2-25x)2.
y=-4x3y(4x2+4y2-25x)+25y2(4x2+4y2-25x)-4xy22(4x2+4y2-25x)
y=-4x3y(4x2+4y2-25x)+25y2(4x2+4y2-25x)-4xy22(4x2+4y2-25x)
Step 1.5.5.3.4
Combine the numerators over the common denominator.
y=-4x3y(4x2+4y2-25x)+25y-4xy22(4x2+4y2-25x)
Step 1.5.5.3.5
Simplify the numerator.
Tap for more steps...
Step 1.5.5.3.5.1
Factor y out of 25y-4xy2.
Tap for more steps...
Step 1.5.5.3.5.1.1
Factor y out of 25y.
y=-4x3y(4x2+4y2-25x)+y25-4xy22(4x2+4y2-25x)
Step 1.5.5.3.5.1.2
Factor y out of -4xy2.
y=-4x3y(4x2+4y2-25x)+y25+y(-4x2)2(4x2+4y2-25x)
Step 1.5.5.3.5.1.3
Factor y out of y25+y(-4x2).
y=-4x3y(4x2+4y2-25x)+y(25-4x2)2(4x2+4y2-25x)
y=-4x3y(4x2+4y2-25x)+y(25-4x2)2(4x2+4y2-25x)
Step 1.5.5.3.5.2
Multiply 2 by -4.
y=-4x3y(4x2+4y2-25x)+y(25-8x)2(4x2+4y2-25x)
y=-4x3y(4x2+4y2-25x)+y(25-8x)2(4x2+4y2-25x)
Step 1.5.5.3.6
To write -4x3y(4x2+4y2-25x) as a fraction with a common denominator, multiply by 22.
y=-4x3y(4x2+4y2-25x)22+y(25-8x)2(4x2+4y2-25x)
Step 1.5.5.3.7
To write y(25-8x)2(4x2+4y2-25x) as a fraction with a common denominator, multiply by yy.
y=-4x3y(4x2+4y2-25x)22+y(25-8x)2(4x2+4y2-25x)yy
Step 1.5.5.3.8
Write each expression with a common denominator of y(4x2+4y2-25x)2, by multiplying each by an appropriate factor of 1.
Tap for more steps...
Step 1.5.5.3.8.1
Multiply 4x3y(4x2+4y2-25x) by 22.
y=-4x32y(4x2+4y2-25x)2+y(25-8x)2(4x2+4y2-25x)yy
Step 1.5.5.3.8.2
Multiply y(25-8x)2(4x2+4y2-25x) by yy.
y=-4x32y(4x2+4y2-25x)2+y(25-8x)y2(4x2+4y2-25x)y
Step 1.5.5.3.8.3
Reorder the factors of y(4x2+4y2-25x)2.
y=-4x322y(4x2+4y2-25x)+y(25-8x)y2(4x2+4y2-25x)y
Step 1.5.5.3.8.4
Reorder the factors of 2(4x2+4y2-25x)y.
y=-4x322y(4x2+4y2-25x)+y(25-8x)y2y(4x2+4y2-25x)
y=-4x322y(4x2+4y2-25x)+y(25-8x)y2y(4x2+4y2-25x)
Step 1.5.5.3.9
Combine the numerators over the common denominator.
y=-4x32+y(25-8x)y2y(4x2+4y2-25x)
Step 1.5.5.3.10
Simplify the numerator.
Tap for more steps...
Step 1.5.5.3.10.1
Multiply 2 by -4.
y=-8x3+y(25-8x)y2y(4x2+4y2-25x)
Step 1.5.5.3.10.2
Multiply y by y by adding the exponents.
Tap for more steps...
Step 1.5.5.3.10.2.1
Move y.
y=-8x3+yy(25-8x)2y(4x2+4y2-25x)
Step 1.5.5.3.10.2.2
Multiply y by y.
y=-8x3+y2(25-8x)2y(4x2+4y2-25x)
y=-8x3+y2(25-8x)2y(4x2+4y2-25x)
Step 1.5.5.3.10.3
Apply the distributive property.
y=-8x3+y225+y2(-8x)2y(4x2+4y2-25x)
Step 1.5.5.3.10.4
Move 25 to the left of y2.
y=-8x3+25y2+y2(-8x)2y(4x2+4y2-25x)
Step 1.5.5.3.10.5
Rewrite using the commutative property of multiplication.
y=-8x3+25y2-8y2x2y(4x2+4y2-25x)
y=-8x3+25y2-8y2x2y(4x2+4y2-25x)
Step 1.5.5.3.11
Simplify with factoring out.
Tap for more steps...
Step 1.5.5.3.11.1
Factor -1 out of -8x3.
y=-(8x3)+25y2-8y2x2y(4x2+4y2-25x)
Step 1.5.5.3.11.2
Factor -1 out of 25y2.
y=-(8x3)-(-25y2)-8y2x2y(4x2+4y2-25x)
Step 1.5.5.3.11.3
Factor -1 out of -(8x3)-(-25y2).
y=-(8x3-25y2)-8y2x2y(4x2+4y2-25x)
Step 1.5.5.3.11.4
Factor -1 out of -8y2x.
y=-(8x3-25y2)-(8y2x)2y(4x2+4y2-25x)
Step 1.5.5.3.11.5
Factor -1 out of -(8x3-25y2)-(8y2x).
y=-(8x3-25y2+8y2x)2y(4x2+4y2-25x)
Step 1.5.5.3.11.6
Simplify the expression.
Tap for more steps...
Step 1.5.5.3.11.6.1
Rewrite -(8x3-25y2+8y2x) as -1(8x3-25y2+8y2x).
y=-1(8x3-25y2+8y2x)2y(4x2+4y2-25x)
Step 1.5.5.3.11.6.2
Move the negative in front of the fraction.
y=-8x3-25y2+8y2x2y(4x2+4y2-25x)
y=-8x3-25y2+8y2x2y(4x2+4y2-25x)
y=-8x3-25y2+8y2x2y(4x2+4y2-25x)
y=-8x3-25y2+8y2x2y(4x2+4y2-25x)
y=-8x3-25y2+8y2x2y(4x2+4y2-25x)
y=-8x3-25y2+8y2x2y(4x2+4y2-25x)
Step 1.6
Replace y with dydx.
dydx=-8x3-25y2+8y2x2y(4x2+4y2-25x)
Step 1.7
Evaluate at x=2 and y=1.
Tap for more steps...
Step 1.7.1
Replace the variable x with 2 in the expression.
-8(2)3-25y2+8y2(2)2y(4(2)2+4y2-252)
Step 1.7.2
Replace the variable y with 1 in the expression.
-8(2)3-25(1)2+8(1)2(2)2(1)(4(2)2+4(1)2-252)
Step 1.7.3
Simplify the numerator.
Tap for more steps...
Step 1.7.3.1
Raise 2 to the power of 3.
-88-2512+81222(1)(422+412-252)
Step 1.7.3.2
Multiply 8 by 8.
-64-2512+81222(1)(422+412-252)
Step 1.7.3.3
One to any power is one.
-64-251+81222(1)(422+412-252)
Step 1.7.3.4
Multiply -25 by 1.
-64-25+81222(1)(422+412-252)
Step 1.7.3.5
One to any power is one.
-64-25+8122(1)(422+412-252)
Step 1.7.3.6
Multiply 812.
Tap for more steps...
Step 1.7.3.6.1
Multiply 8 by 1.
-64-25+822(1)(422+412-252)
Step 1.7.3.6.2
Multiply 8 by 2.
-64-25+162(1)(422+412-252)
-64-25+162(1)(422+412-252)
Step 1.7.3.7
Subtract 25 from 64.
-39+162(1)(422+412-252)
Step 1.7.3.8
Add 39 and 16.
-552(1)(422+412-252)
-552(1)(422+412-252)
Step 1.7.4
Multiply 2 by 1.
-552(422+412-252)
Step 1.7.5
Simplify the denominator.
Tap for more steps...
Step 1.7.5.1
Raise 2 to the power of 2.
-552(44+412-252)
Step 1.7.5.2
Multiply 4 by 4.
-552(16+412-252)
Step 1.7.5.3
One to any power is one.
-552(16+41-252)
Step 1.7.5.4
Multiply 4 by 1.
-552(16+4-252)
Step 1.7.5.5
Multiply -25 by 2.
-552(16+4-50)
Step 1.7.5.6
Add 16 and 4.
-552(20-50)
Step 1.7.5.7
Subtract 50 from 20.
-552-30
-552-30
Step 1.7.6
Reduce the expression by cancelling the common factors.
Tap for more steps...
Step 1.7.6.1
Multiply 2 by -30.
-55-60
Step 1.7.6.2
Cancel the common factor of 55 and -60.
Tap for more steps...
Step 1.7.6.2.1
Factor 5 out of 55.
-5(11)-60
Step 1.7.6.2.2
Cancel the common factors.
Tap for more steps...
Step 1.7.6.2.2.1
Factor 5 out of -60.
-5115-12
Step 1.7.6.2.2.2
Cancel the common factor.
-5115-12
Step 1.7.6.2.2.3
Rewrite the expression.
-11-12
-11-12
-11-12
Step 1.7.6.3
Move the negative in front of the fraction.
--1112
--1112
Step 1.7.7
Multiply --1112.
Tap for more steps...
Step 1.7.7.1
Multiply -1 by -1.
1(1112)
Step 1.7.7.2
Multiply 1112 by 1.
1112
1112
1112
1112
Step 2
Plug the slope and point values into the point-slope formula and solve for y.
Tap for more steps...
Step 2.1
Use the slope 1112 and a given point (2,1) to substitute for x1 and y1 in the point-slope form y-y1=m(x-x1), which is derived from the slope equation m=y2-y1x2-x1.
y-(1)=1112(x-(2))
Step 2.2
Simplify the equation and keep it in point-slope form.
y-1=1112(x-2)
Step 2.3
Solve for y.
Tap for more steps...
Step 2.3.1
Simplify 1112(x-2).
Tap for more steps...
Step 2.3.1.1
Rewrite.
y-1=0+0+1112(x-2)
Step 2.3.1.2
Simplify by adding zeros.
y-1=1112(x-2)
Step 2.3.1.3
Apply the distributive property.
y-1=1112x+1112-2
Step 2.3.1.4
Combine 1112 and x.
y-1=11x12+1112-2
Step 2.3.1.5
Cancel the common factor of 2.
Tap for more steps...
Step 2.3.1.5.1
Factor 2 out of 12.
y-1=11x12+112(6)-2
Step 2.3.1.5.2
Factor 2 out of -2.
y-1=11x12+1126(2-1)
Step 2.3.1.5.3
Cancel the common factor.
y-1=11x12+1126(2-1)
Step 2.3.1.5.4
Rewrite the expression.
y-1=11x12+116-1
y-1=11x12+116-1
Step 2.3.1.6
Combine 116 and -1.
y-1=11x12+11-16
Step 2.3.1.7
Simplify the expression.
Tap for more steps...
Step 2.3.1.7.1
Multiply 11 by -1.
y-1=11x12+-116
Step 2.3.1.7.2
Move the negative in front of the fraction.
y-1=11x12-116
y-1=11x12-116
y-1=11x12-116
Step 2.3.2
Move all terms not containing y to the right side of the equation.
Tap for more steps...
Step 2.3.2.1
Add 1 to both sides of the equation.
y=11x12-116+1
Step 2.3.2.2
Write 1 as a fraction with a common denominator.
y=11x12-116+66
Step 2.3.2.3
Combine the numerators over the common denominator.
y=11x12+-11+66
Step 2.3.2.4
Add -11 and 6.
y=11x12+-56
Step 2.3.2.5
Move the negative in front of the fraction.
y=11x12-56
y=11x12-56
Step 2.3.3
Reorder terms.
y=1112x-56
y=1112x-56
y=1112x-56
Step 3
 [x2  12  π  xdx ]