Enter a problem...
Calculus Examples
2(x2+y2)2=25xy22(x2+y2)2=25xy2 ; (2,1)
Step 1
Step 1.1
Differentiate both sides of the equation.
ddx(2(x2+y2)2)=ddx(25xy2)
Step 1.2
Differentiate the left side of the equation.
Step 1.2.1
Since 2 is constant with respect to x, the derivative of 2(x2+y2)2 with respect to x is 2ddx[(x2+y2)2].
2ddx[(x2+y2)2]
Step 1.2.2
Differentiate using the chain rule, which states that ddx[f(g(x))] is f′(g(x))g′(x) where f(x)=x2 and g(x)=x2+y2.
Step 1.2.2.1
To apply the Chain Rule, set u1 as x2+y2.
2(ddu1[u12]ddx[x2+y2])
Step 1.2.2.2
Differentiate using the Power Rule which states that ddu1[u1n] is nu1n-1 where n=2.
2(2u1ddx[x2+y2])
Step 1.2.2.3
Replace all occurrences of u1 with x2+y2.
2(2(x2+y2)ddx[x2+y2])
2(2(x2+y2)ddx[x2+y2])
Step 1.2.3
Differentiate.
Step 1.2.3.1
Multiply 2 by 2.
4((x2+y2)ddx[x2+y2])
Step 1.2.3.2
By the Sum Rule, the derivative of x2+y2 with respect to x is ddx[x2]+ddx[y2].
4(x2+y2)(ddx[x2]+ddx[y2])
Step 1.2.3.3
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=2.
4(x2+y2)(2x+ddx[y2])
4(x2+y2)(2x+ddx[y2])
Step 1.2.4
Differentiate using the chain rule, which states that ddx[f(g(x))] is f′(g(x))g′(x) where f(x)=x2 and g(x)=y.
Step 1.2.4.1
To apply the Chain Rule, set u2 as y.
4(x2+y2)(2x+ddu2[u22]ddx[y])
Step 1.2.4.2
Differentiate using the Power Rule which states that ddu2[u2n] is nu2n-1 where n=2.
4(x2+y2)(2x+2u2ddx[y])
Step 1.2.4.3
Replace all occurrences of u2 with y.
4(x2+y2)(2x+2yddx[y])
4(x2+y2)(2x+2yddx[y])
Step 1.2.5
Rewrite ddx[y] as y′.
4(x2+y2)(2x+2yy′)
Step 1.2.6
Simplify.
Step 1.2.6.1
Apply the distributive property.
(4x2+4y2)(2x+2yy′)
Step 1.2.6.2
Reorder the factors of (4x2+4y2)(2x+2yy′).
(2x+2yy′)(4x2+4y2)
(2x+2yy′)(4x2+4y2)
(2x+2yy′)(4x2+4y2)
Step 1.3
Differentiate the right side of the equation.
Step 1.3.1
Since 25 is constant with respect to x, the derivative of 25xy2 with respect to x is 25ddx[xy2].
25ddx[xy2]
Step 1.3.2
Differentiate using the Product Rule which states that ddx[f(x)g(x)] is f(x)ddx[g(x)]+g(x)ddx[f(x)] where f(x)=x and g(x)=y2.
25(xddx[y2]+y2ddx[x])
Step 1.3.3
Differentiate using the chain rule, which states that ddx[f(g(x))] is f′(g(x))g′(x) where f(x)=x2 and g(x)=y.
Step 1.3.3.1
To apply the Chain Rule, set u as y.
25(x(ddu[u2]ddx[y])+y2ddx[x])
Step 1.3.3.2
Differentiate using the Power Rule which states that ddu[un] is nun-1 where n=2.
25(x(2uddx[y])+y2ddx[x])
Step 1.3.3.3
Replace all occurrences of u with y.
25(x(2yddx[y])+y2ddx[x])
25(x(2yddx[y])+y2ddx[x])
Step 1.3.4
Move 2 to the left of x.
25(2⋅xyddx[y]+y2ddx[x])
Step 1.3.5
Rewrite ddx[y] as y′.
25(2xyy′+y2ddx[x])
Step 1.3.6
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=1.
25(2xyy′+y2⋅1)
Step 1.3.7
Multiply y2 by 1.
25(2xyy′+y2)
Step 1.3.8
Simplify.
Step 1.3.8.1
Apply the distributive property.
25(2xyy′)+25y2
Step 1.3.8.2
Multiply 2 by 25.
50xyy′+25y2
Step 1.3.8.3
Reorder terms.
25y2+50xyy′
25y2+50xyy′
25y2+50xyy′
Step 1.4
Reform the equation by setting the left side equal to the right side.
(2x+2yy′)(4x2+4y2)=25y2+50xyy′
Step 1.5
Solve for y′.
Step 1.5.1
Simplify (2x+2yy′)(4x2+4y2).
Step 1.5.1.1
Rewrite.
0+0+(2x+2yy′)(4x2+4y2)=25y2+50xyy′
Step 1.5.1.2
Simplify by adding zeros.
(2x+2yy′)(4x2+4y2)=25y2+50xyy′
Step 1.5.1.3
Expand (2x+2yy′)(4x2+4y2) using the FOIL Method.
Step 1.5.1.3.1
Apply the distributive property.
2x(4x2+4y2)+2yy′(4x2+4y2)=25y2+50xyy′
Step 1.5.1.3.2
Apply the distributive property.
2x(4x2)+2x(4y2)+2yy′(4x2+4y2)=25y2+50xyy′
Step 1.5.1.3.3
Apply the distributive property.
2x(4x2)+2x(4y2)+2yy′(4x2)+2yy′(4y2)=25y2+50xyy′
2x(4x2)+2x(4y2)+2yy′(4x2)+2yy′(4y2)=25y2+50xyy′
Step 1.5.1.4
Simplify each term.
Step 1.5.1.4.1
Rewrite using the commutative property of multiplication.
2⋅4x⋅x2+2x(4y2)+2yy′(4x2)+2yy′(4y2)=25y2+50xyy′
Step 1.5.1.4.2
Multiply x by x2 by adding the exponents.
Step 1.5.1.4.2.1
Move x2.
2⋅4(x2x)+2x(4y2)+2yy′(4x2)+2yy′(4y2)=25y2+50xyy′
Step 1.5.1.4.2.2
Multiply x2 by x.
Step 1.5.1.4.2.2.1
Raise x to the power of 1.
2⋅4(x2x1)+2x(4y2)+2yy′(4x2)+2yy′(4y2)=25y2+50xyy′
Step 1.5.1.4.2.2.2
Use the power rule aman=am+n to combine exponents.
2⋅4x2+1+2x(4y2)+2yy′(4x2)+2yy′(4y2)=25y2+50xyy′
2⋅4x2+1+2x(4y2)+2yy′(4x2)+2yy′(4y2)=25y2+50xyy′
Step 1.5.1.4.2.3
Add 2 and 1.
2⋅4x3+2x(4y2)+2yy′(4x2)+2yy′(4y2)=25y2+50xyy′
2⋅4x3+2x(4y2)+2yy′(4x2)+2yy′(4y2)=25y2+50xyy′
Step 1.5.1.4.3
Multiply 2 by 4.
8x3+2x(4y2)+2yy′(4x2)+2yy′(4y2)=25y2+50xyy′
Step 1.5.1.4.4
Rewrite using the commutative property of multiplication.
8x3+2⋅4xy2+2yy′(4x2)+2yy′(4y2)=25y2+50xyy′
Step 1.5.1.4.5
Multiply 2 by 4.
8x3+8xy2+2yy′(4x2)+2yy′(4y2)=25y2+50xyy′
Step 1.5.1.4.6
Multiply 4 by 2.
8x3+8xy2+8yy′x2+2yy′(4y2)=25y2+50xyy′
Step 1.5.1.4.7
Multiply y by y2 by adding the exponents.
Step 1.5.1.4.7.1
Move y2.
8x3+8xy2+8yy′x2+2(y2y)y′⋅4=25y2+50xyy′
Step 1.5.1.4.7.2
Multiply y2 by y.
Step 1.5.1.4.7.2.1
Raise y to the power of 1.
8x3+8xy2+8yy′x2+2(y2y1)y′⋅4=25y2+50xyy′
Step 1.5.1.4.7.2.2
Use the power rule aman=am+n to combine exponents.
8x3+8xy2+8yy′x2+2y2+1y′⋅4=25y2+50xyy′
8x3+8xy2+8yy′x2+2y2+1y′⋅4=25y2+50xyy′
Step 1.5.1.4.7.3
Add 2 and 1.
8x3+8xy2+8yy′x2+2y3y′⋅4=25y2+50xyy′
8x3+8xy2+8yy′x2+2y3y′⋅4=25y2+50xyy′
Step 1.5.1.4.8
Multiply 4 by 2.
8x3+8xy2+8yy′x2+8y3y′=25y2+50xyy′
8x3+8xy2+8yy′x2+8y3y′=25y2+50xyy′
8x3+8xy2+8yy′x2+8y3y′=25y2+50xyy′
Step 1.5.2
Subtract 50xyy′ from both sides of the equation.
8x3+8xy2+8yy′x2+8y3y′-50xyy′=25y2
Step 1.5.3
Move all terms not containing y′ to the right side of the equation.
Step 1.5.3.1
Subtract 8x3 from both sides of the equation.
8xy2+8yy′x2+8y3y′-50xyy′=25y2-8x3
Step 1.5.3.2
Subtract 8xy2 from both sides of the equation.
8yy′x2+8y3y′-50xyy′=25y2-8x3-8xy2
8yy′x2+8y3y′-50xyy′=25y2-8x3-8xy2
Step 1.5.4
Factor 2yy′ out of 8yy′x2+8y3y′-50xyy′.
Step 1.5.4.1
Factor 2yy′ out of 8yy′x2.
2yy′(4x2)+8y3y′-50xyy′=25y2-8x3-8xy2
Step 1.5.4.2
Factor 2yy′ out of 8y3y′.
2yy′(4x2)+2yy′(4y2)-50xyy′=25y2-8x3-8xy2
Step 1.5.4.3
Factor 2yy′ out of -50xyy′.
2yy′(4x2)+2yy′(4y2)+2yy′(-25x)=25y2-8x3-8xy2
Step 1.5.4.4
Factor 2yy′ out of 2yy′(4x2)+2yy′(4y2).
2yy′(4x2+4y2)+2yy′(-25x)=25y2-8x3-8xy2
Step 1.5.4.5
Factor 2yy′ out of 2yy′(4x2+4y2)+2yy′(-25x).
2yy′(4x2+4y2-25x)=25y2-8x3-8xy2
2yy′(4x2+4y2-25x)=25y2-8x3-8xy2
Step 1.5.5
Divide each term in 2yy′(4x2+4y2-25x)=25y2-8x3-8xy2 by 2y(4x2+4y2-25x) and simplify.
Step 1.5.5.1
Divide each term in 2yy′(4x2+4y2-25x)=25y2-8x3-8xy2 by 2y(4x2+4y2-25x).
2yy′(4x2+4y2-25x)2y(4x2+4y2-25x)=25y22y(4x2+4y2-25x)+-8x32y(4x2+4y2-25x)+-8xy22y(4x2+4y2-25x)
Step 1.5.5.2
Simplify the left side.
Step 1.5.5.2.1
Cancel the common factor of 2.
Step 1.5.5.2.1.1
Cancel the common factor.
2yy′(4x2+4y2-25x)2y(4x2+4y2-25x)=25y22y(4x2+4y2-25x)+-8x32y(4x2+4y2-25x)+-8xy22y(4x2+4y2-25x)
Step 1.5.5.2.1.2
Rewrite the expression.
yy′(4x2+4y2-25x)y(4x2+4y2-25x)=25y22y(4x2+4y2-25x)+-8x32y(4x2+4y2-25x)+-8xy22y(4x2+4y2-25x)
yy′(4x2+4y2-25x)y(4x2+4y2-25x)=25y22y(4x2+4y2-25x)+-8x32y(4x2+4y2-25x)+-8xy22y(4x2+4y2-25x)
Step 1.5.5.2.2
Cancel the common factor of y.
Step 1.5.5.2.2.1
Cancel the common factor.
yy′(4x2+4y2-25x)y(4x2+4y2-25x)=25y22y(4x2+4y2-25x)+-8x32y(4x2+4y2-25x)+-8xy22y(4x2+4y2-25x)
Step 1.5.5.2.2.2
Rewrite the expression.
y′(4x2+4y2-25x)4x2+4y2-25x=25y22y(4x2+4y2-25x)+-8x32y(4x2+4y2-25x)+-8xy22y(4x2+4y2-25x)
y′(4x2+4y2-25x)4x2+4y2-25x=25y22y(4x2+4y2-25x)+-8x32y(4x2+4y2-25x)+-8xy22y(4x2+4y2-25x)
Step 1.5.5.2.3
Cancel the common factor of 4x2+4y2-25x.
Step 1.5.5.2.3.1
Cancel the common factor.
y′(4x2+4y2-25x)4x2+4y2-25x=25y22y(4x2+4y2-25x)+-8x32y(4x2+4y2-25x)+-8xy22y(4x2+4y2-25x)
Step 1.5.5.2.3.2
Divide y′ by 1.
y′=25y22y(4x2+4y2-25x)+-8x32y(4x2+4y2-25x)+-8xy22y(4x2+4y2-25x)
y′=25y22y(4x2+4y2-25x)+-8x32y(4x2+4y2-25x)+-8xy22y(4x2+4y2-25x)
y′=25y22y(4x2+4y2-25x)+-8x32y(4x2+4y2-25x)+-8xy22y(4x2+4y2-25x)
Step 1.5.5.3
Simplify the right side.
Step 1.5.5.3.1
Simplify each term.
Step 1.5.5.3.1.1
Cancel the common factor of y2 and y.
Step 1.5.5.3.1.1.1
Factor y out of 25y2.
y′=y(25y)2y(4x2+4y2-25x)+-8x32y(4x2+4y2-25x)+-8xy22y(4x2+4y2-25x)
Step 1.5.5.3.1.1.2
Cancel the common factors.
Step 1.5.5.3.1.1.2.1
Factor y out of 2y(4x2+4y2-25x).
y′=y(25y)y(2(4x2+4y2-25x))+-8x32y(4x2+4y2-25x)+-8xy22y(4x2+4y2-25x)
Step 1.5.5.3.1.1.2.2
Cancel the common factor.
y′=y(25y)y(2(4x2+4y2-25x))+-8x32y(4x2+4y2-25x)+-8xy22y(4x2+4y2-25x)
Step 1.5.5.3.1.1.2.3
Rewrite the expression.
y′=25y2(4x2+4y2-25x)+-8x32y(4x2+4y2-25x)+-8xy22y(4x2+4y2-25x)
y′=25y2(4x2+4y2-25x)+-8x32y(4x2+4y2-25x)+-8xy22y(4x2+4y2-25x)
y′=25y2(4x2+4y2-25x)+-8x32y(4x2+4y2-25x)+-8xy22y(4x2+4y2-25x)
Step 1.5.5.3.1.2
Cancel the common factor of -8 and 2.
Step 1.5.5.3.1.2.1
Factor 2 out of -8x3.
y′=25y2(4x2+4y2-25x)+2(-4x3)2y(4x2+4y2-25x)+-8xy22y(4x2+4y2-25x)
Step 1.5.5.3.1.2.2
Cancel the common factors.
Step 1.5.5.3.1.2.2.1
Factor 2 out of 2y(4x2+4y2-25x).
y′=25y2(4x2+4y2-25x)+2(-4x3)2(y(4x2+4y2-25x))+-8xy22y(4x2+4y2-25x)
Step 1.5.5.3.1.2.2.2
Cancel the common factor.
y′=25y2(4x2+4y2-25x)+2(-4x3)2(y(4x2+4y2-25x))+-8xy22y(4x2+4y2-25x)
Step 1.5.5.3.1.2.2.3
Rewrite the expression.
y′=25y2(4x2+4y2-25x)+-4x3y(4x2+4y2-25x)+-8xy22y(4x2+4y2-25x)
y′=25y2(4x2+4y2-25x)+-4x3y(4x2+4y2-25x)+-8xy22y(4x2+4y2-25x)
y′=25y2(4x2+4y2-25x)+-4x3y(4x2+4y2-25x)+-8xy22y(4x2+4y2-25x)
Step 1.5.5.3.1.3
Move the negative in front of the fraction.
y′=25y2(4x2+4y2-25x)-4x3y(4x2+4y2-25x)+-8xy22y(4x2+4y2-25x)
Step 1.5.5.3.1.4
Cancel the common factor of -8 and 2.
Step 1.5.5.3.1.4.1
Factor 2 out of -8xy2.
y′=25y2(4x2+4y2-25x)-4x3y(4x2+4y2-25x)+2(-4xy2)2y(4x2+4y2-25x)
Step 1.5.5.3.1.4.2
Cancel the common factors.
Step 1.5.5.3.1.4.2.1
Factor 2 out of 2y(4x2+4y2-25x).
y′=25y2(4x2+4y2-25x)-4x3y(4x2+4y2-25x)+2(-4xy2)2(y(4x2+4y2-25x))
Step 1.5.5.3.1.4.2.2
Cancel the common factor.
y′=25y2(4x2+4y2-25x)-4x3y(4x2+4y2-25x)+2(-4xy2)2(y(4x2+4y2-25x))
Step 1.5.5.3.1.4.2.3
Rewrite the expression.
y′=25y2(4x2+4y2-25x)-4x3y(4x2+4y2-25x)+-4xy2y(4x2+4y2-25x)
y′=25y2(4x2+4y2-25x)-4x3y(4x2+4y2-25x)+-4xy2y(4x2+4y2-25x)
y′=25y2(4x2+4y2-25x)-4x3y(4x2+4y2-25x)+-4xy2y(4x2+4y2-25x)
Step 1.5.5.3.1.5
Cancel the common factor of y2 and y.
Step 1.5.5.3.1.5.1
Factor y out of -4xy2.
y′=25y2(4x2+4y2-25x)-4x3y(4x2+4y2-25x)+y(-4xy)y(4x2+4y2-25x)
Step 1.5.5.3.1.5.2
Cancel the common factors.
Step 1.5.5.3.1.5.2.1
Cancel the common factor.
y′=25y2(4x2+4y2-25x)-4x3y(4x2+4y2-25x)+y(-4xy)y(4x2+4y2-25x)
Step 1.5.5.3.1.5.2.2
Rewrite the expression.
y′=25y2(4x2+4y2-25x)-4x3y(4x2+4y2-25x)+-4xy4x2+4y2-25x
y′=25y2(4x2+4y2-25x)-4x3y(4x2+4y2-25x)+-4xy4x2+4y2-25x
y′=25y2(4x2+4y2-25x)-4x3y(4x2+4y2-25x)+-4xy4x2+4y2-25x
Step 1.5.5.3.1.6
Move the negative in front of the fraction.
y′=25y2(4x2+4y2-25x)-4x3y(4x2+4y2-25x)-4xy4x2+4y2-25x
y′=25y2(4x2+4y2-25x)-4x3y(4x2+4y2-25x)-4xy4x2+4y2-25x
Step 1.5.5.3.2
To write -4xy4x2+4y2-25x as a fraction with a common denominator, multiply by 22.
y′=-4x3y(4x2+4y2-25x)+25y2(4x2+4y2-25x)-4xy4x2+4y2-25x⋅22
Step 1.5.5.3.3
Write each expression with a common denominator of 2(4x2+4y2-25x), by multiplying each by an appropriate factor of 1.
Step 1.5.5.3.3.1
Multiply 4xy4x2+4y2-25x by 22.
y′=-4x3y(4x2+4y2-25x)+25y2(4x2+4y2-25x)-4xy⋅2(4x2+4y2-25x)⋅2
Step 1.5.5.3.3.2
Reorder the factors of (4x2+4y2-25x)⋅2.
y′=-4x3y(4x2+4y2-25x)+25y2(4x2+4y2-25x)-4xy⋅22(4x2+4y2-25x)
y′=-4x3y(4x2+4y2-25x)+25y2(4x2+4y2-25x)-4xy⋅22(4x2+4y2-25x)
Step 1.5.5.3.4
Combine the numerators over the common denominator.
y′=-4x3y(4x2+4y2-25x)+25y-4xy⋅22(4x2+4y2-25x)
Step 1.5.5.3.5
Simplify the numerator.
Step 1.5.5.3.5.1
Factor y out of 25y-4xy⋅2.
Step 1.5.5.3.5.1.1
Factor y out of 25y.
y′=-4x3y(4x2+4y2-25x)+y⋅25-4xy⋅22(4x2+4y2-25x)
Step 1.5.5.3.5.1.2
Factor y out of -4xy⋅2.
y′=-4x3y(4x2+4y2-25x)+y⋅25+y(-4x⋅2)2(4x2+4y2-25x)
Step 1.5.5.3.5.1.3
Factor y out of y⋅25+y(-4x⋅2).
y′=-4x3y(4x2+4y2-25x)+y(25-4x⋅2)2(4x2+4y2-25x)
y′=-4x3y(4x2+4y2-25x)+y(25-4x⋅2)2(4x2+4y2-25x)
Step 1.5.5.3.5.2
Multiply 2 by -4.
y′=-4x3y(4x2+4y2-25x)+y(25-8x)2(4x2+4y2-25x)
y′=-4x3y(4x2+4y2-25x)+y(25-8x)2(4x2+4y2-25x)
Step 1.5.5.3.6
To write -4x3y(4x2+4y2-25x) as a fraction with a common denominator, multiply by 22.
y′=-4x3y(4x2+4y2-25x)⋅22+y(25-8x)2(4x2+4y2-25x)
Step 1.5.5.3.7
To write y(25-8x)2(4x2+4y2-25x) as a fraction with a common denominator, multiply by yy.
y′=-4x3y(4x2+4y2-25x)⋅22+y(25-8x)2(4x2+4y2-25x)⋅yy
Step 1.5.5.3.8
Write each expression with a common denominator of y(4x2+4y2-25x)⋅2, by multiplying each by an appropriate factor of 1.
Step 1.5.5.3.8.1
Multiply 4x3y(4x2+4y2-25x) by 22.
y′=-4x3⋅2y(4x2+4y2-25x)⋅2+y(25-8x)2(4x2+4y2-25x)⋅yy
Step 1.5.5.3.8.2
Multiply y(25-8x)2(4x2+4y2-25x) by yy.
y′=-4x3⋅2y(4x2+4y2-25x)⋅2+y(25-8x)y2(4x2+4y2-25x)y
Step 1.5.5.3.8.3
Reorder the factors of y(4x2+4y2-25x)⋅2.
y′=-4x3⋅22y(4x2+4y2-25x)+y(25-8x)y2(4x2+4y2-25x)y
Step 1.5.5.3.8.4
Reorder the factors of 2(4x2+4y2-25x)y.
y′=-4x3⋅22y(4x2+4y2-25x)+y(25-8x)y2y(4x2+4y2-25x)
y′=-4x3⋅22y(4x2+4y2-25x)+y(25-8x)y2y(4x2+4y2-25x)
Step 1.5.5.3.9
Combine the numerators over the common denominator.
y′=-4x3⋅2+y(25-8x)y2y(4x2+4y2-25x)
Step 1.5.5.3.10
Simplify the numerator.
Step 1.5.5.3.10.1
Multiply 2 by -4.
y′=-8x3+y(25-8x)y2y(4x2+4y2-25x)
Step 1.5.5.3.10.2
Multiply y by y by adding the exponents.
Step 1.5.5.3.10.2.1
Move y.
y′=-8x3+y⋅y(25-8x)2y(4x2+4y2-25x)
Step 1.5.5.3.10.2.2
Multiply y by y.
y′=-8x3+y2(25-8x)2y(4x2+4y2-25x)
y′=-8x3+y2(25-8x)2y(4x2+4y2-25x)
Step 1.5.5.3.10.3
Apply the distributive property.
y′=-8x3+y2⋅25+y2(-8x)2y(4x2+4y2-25x)
Step 1.5.5.3.10.4
Move 25 to the left of y2.
y′=-8x3+25⋅y2+y2(-8x)2y(4x2+4y2-25x)
Step 1.5.5.3.10.5
Rewrite using the commutative property of multiplication.
y′=-8x3+25y2-8y2x2y(4x2+4y2-25x)
y′=-8x3+25y2-8y2x2y(4x2+4y2-25x)
Step 1.5.5.3.11
Simplify with factoring out.
Step 1.5.5.3.11.1
Factor -1 out of -8x3.
y′=-(8x3)+25y2-8y2x2y(4x2+4y2-25x)
Step 1.5.5.3.11.2
Factor -1 out of 25y2.
y′=-(8x3)-(-25y2)-8y2x2y(4x2+4y2-25x)
Step 1.5.5.3.11.3
Factor -1 out of -(8x3)-(-25y2).
y′=-(8x3-25y2)-8y2x2y(4x2+4y2-25x)
Step 1.5.5.3.11.4
Factor -1 out of -8y2x.
y′=-(8x3-25y2)-(8y2x)2y(4x2+4y2-25x)
Step 1.5.5.3.11.5
Factor -1 out of -(8x3-25y2)-(8y2x).
y′=-(8x3-25y2+8y2x)2y(4x2+4y2-25x)
Step 1.5.5.3.11.6
Simplify the expression.
Step 1.5.5.3.11.6.1
Rewrite -(8x3-25y2+8y2x) as -1(8x3-25y2+8y2x).
y′=-1(8x3-25y2+8y2x)2y(4x2+4y2-25x)
Step 1.5.5.3.11.6.2
Move the negative in front of the fraction.
y′=-8x3-25y2+8y2x2y(4x2+4y2-25x)
y′=-8x3-25y2+8y2x2y(4x2+4y2-25x)
y′=-8x3-25y2+8y2x2y(4x2+4y2-25x)
y′=-8x3-25y2+8y2x2y(4x2+4y2-25x)
y′=-8x3-25y2+8y2x2y(4x2+4y2-25x)
y′=-8x3-25y2+8y2x2y(4x2+4y2-25x)
Step 1.6
Replace y′ with dydx.
dydx=-8x3-25y2+8y2x2y(4x2+4y2-25x)
Step 1.7
Evaluate at x=2 and y=1.
Step 1.7.1
Replace the variable x with 2 in the expression.
-8(2)3-25y2+8y2(2)2y(4(2)2+4y2-25⋅2)
Step 1.7.2
Replace the variable y with 1 in the expression.
-8(2)3-25(1)2+8(1)2(2)2(1)(4(2)2+4(1)2-25⋅2)
Step 1.7.3
Simplify the numerator.
Step 1.7.3.1
Raise 2 to the power of 3.
-8⋅8-25⋅12+8⋅12⋅22(1)(4⋅22+4⋅12-25⋅2)
Step 1.7.3.2
Multiply 8 by 8.
-64-25⋅12+8⋅12⋅22(1)(4⋅22+4⋅12-25⋅2)
Step 1.7.3.3
One to any power is one.
-64-25⋅1+8⋅12⋅22(1)(4⋅22+4⋅12-25⋅2)
Step 1.7.3.4
Multiply -25 by 1.
-64-25+8⋅12⋅22(1)(4⋅22+4⋅12-25⋅2)
Step 1.7.3.5
One to any power is one.
-64-25+8⋅1⋅22(1)(4⋅22+4⋅12-25⋅2)
Step 1.7.3.6
Multiply 8⋅1⋅2.
Step 1.7.3.6.1
Multiply 8 by 1.
-64-25+8⋅22(1)(4⋅22+4⋅12-25⋅2)
Step 1.7.3.6.2
Multiply 8 by 2.
-64-25+162(1)(4⋅22+4⋅12-25⋅2)
-64-25+162(1)(4⋅22+4⋅12-25⋅2)
Step 1.7.3.7
Subtract 25 from 64.
-39+162(1)(4⋅22+4⋅12-25⋅2)
Step 1.7.3.8
Add 39 and 16.
-552(1)(4⋅22+4⋅12-25⋅2)
-552(1)(4⋅22+4⋅12-25⋅2)
Step 1.7.4
Multiply 2 by 1.
-552(4⋅22+4⋅12-25⋅2)
Step 1.7.5
Simplify the denominator.
Step 1.7.5.1
Raise 2 to the power of 2.
-552(4⋅4+4⋅12-25⋅2)
Step 1.7.5.2
Multiply 4 by 4.
-552(16+4⋅12-25⋅2)
Step 1.7.5.3
One to any power is one.
-552(16+4⋅1-25⋅2)
Step 1.7.5.4
Multiply 4 by 1.
-552(16+4-25⋅2)
Step 1.7.5.5
Multiply -25 by 2.
-552(16+4-50)
Step 1.7.5.6
Add 16 and 4.
-552(20-50)
Step 1.7.5.7
Subtract 50 from 20.
-552⋅-30
-552⋅-30
Step 1.7.6
Reduce the expression by cancelling the common factors.
Step 1.7.6.1
Multiply 2 by -30.
-55-60
Step 1.7.6.2
Cancel the common factor of 55 and -60.
Step 1.7.6.2.1
Factor 5 out of 55.
-5(11)-60
Step 1.7.6.2.2
Cancel the common factors.
Step 1.7.6.2.2.1
Factor 5 out of -60.
-5⋅115⋅-12
Step 1.7.6.2.2.2
Cancel the common factor.
-5⋅115⋅-12
Step 1.7.6.2.2.3
Rewrite the expression.
-11-12
-11-12
-11-12
Step 1.7.6.3
Move the negative in front of the fraction.
--1112
--1112
Step 1.7.7
Multiply --1112.
Step 1.7.7.1
Multiply -1 by -1.
1(1112)
Step 1.7.7.2
Multiply 1112 by 1.
1112
1112
1112
1112
Step 2
Step 2.1
Use the slope 1112 and a given point (2,1) to substitute for x1 and y1 in the point-slope form y-y1=m(x-x1), which is derived from the slope equation m=y2-y1x2-x1.
y-(1)=1112⋅(x-(2))
Step 2.2
Simplify the equation and keep it in point-slope form.
y-1=1112⋅(x-2)
Step 2.3
Solve for y.
Step 2.3.1
Simplify 1112⋅(x-2).
Step 2.3.1.1
Rewrite.
y-1=0+0+1112⋅(x-2)
Step 2.3.1.2
Simplify by adding zeros.
y-1=1112⋅(x-2)
Step 2.3.1.3
Apply the distributive property.
y-1=1112x+1112⋅-2
Step 2.3.1.4
Combine 1112 and x.
y-1=11x12+1112⋅-2
Step 2.3.1.5
Cancel the common factor of 2.
Step 2.3.1.5.1
Factor 2 out of 12.
y-1=11x12+112(6)⋅-2
Step 2.3.1.5.2
Factor 2 out of -2.
y-1=11x12+112⋅6⋅(2⋅-1)
Step 2.3.1.5.3
Cancel the common factor.
y-1=11x12+112⋅6⋅(2⋅-1)
Step 2.3.1.5.4
Rewrite the expression.
y-1=11x12+116⋅-1
y-1=11x12+116⋅-1
Step 2.3.1.6
Combine 116 and -1.
y-1=11x12+11⋅-16
Step 2.3.1.7
Simplify the expression.
Step 2.3.1.7.1
Multiply 11 by -1.
y-1=11x12+-116
Step 2.3.1.7.2
Move the negative in front of the fraction.
y-1=11x12-116
y-1=11x12-116
y-1=11x12-116
Step 2.3.2
Move all terms not containing y to the right side of the equation.
Step 2.3.2.1
Add 1 to both sides of the equation.
y=11x12-116+1
Step 2.3.2.2
Write 1 as a fraction with a common denominator.
y=11x12-116+66
Step 2.3.2.3
Combine the numerators over the common denominator.
y=11x12+-11+66
Step 2.3.2.4
Add -11 and 6.
y=11x12+-56
Step 2.3.2.5
Move the negative in front of the fraction.
y=11x12-56
y=11x12-56
Step 2.3.3
Reorder terms.
y=1112x-56
y=1112x-56
y=1112x-56
Step 3