Enter a problem...
Calculus Examples
y=3x2-2x+1y=3x2−2x+1 , (1,2)(1,2)
Step 1
Step 1.1
By the Sum Rule, the derivative of 3x2-2x+13x2−2x+1 with respect to xx is ddx[3x2]+ddx[-2x]+ddx[1]ddx[3x2]+ddx[−2x]+ddx[1].
ddx[3x2]+ddx[-2x]+ddx[1]ddx[3x2]+ddx[−2x]+ddx[1]
Step 1.2
Evaluate ddx[3x2]ddx[3x2].
Step 1.2.1
Since 33 is constant with respect to xx, the derivative of 3x23x2 with respect to xx is 3ddx[x2]3ddx[x2].
3ddx[x2]+ddx[-2x]+ddx[1]3ddx[x2]+ddx[−2x]+ddx[1]
Step 1.2.2
Differentiate using the Power Rule which states that ddx[xn]ddx[xn] is nxn-1nxn−1 where n=2n=2.
3(2x)+ddx[-2x]+ddx[1]3(2x)+ddx[−2x]+ddx[1]
Step 1.2.3
Multiply 22 by 33.
6x+ddx[-2x]+ddx[1]6x+ddx[−2x]+ddx[1]
6x+ddx[-2x]+ddx[1]6x+ddx[−2x]+ddx[1]
Step 1.3
Evaluate ddx[-2x]ddx[−2x].
Step 1.3.1
Since -2−2 is constant with respect to xx, the derivative of -2x−2x with respect to xx is -2ddx[x]−2ddx[x].
6x-2ddx[x]+ddx[1]6x−2ddx[x]+ddx[1]
Step 1.3.2
Differentiate using the Power Rule which states that ddx[xn]ddx[xn] is nxn-1nxn−1 where n=1n=1.
6x-2⋅1+ddx[1]6x−2⋅1+ddx[1]
Step 1.3.3
Multiply -2−2 by 11.
6x-2+ddx[1]6x−2+ddx[1]
6x-2+ddx[1]6x−2+ddx[1]
Step 1.4
Differentiate using the Constant Rule.
Step 1.4.1
Since 11 is constant with respect to xx, the derivative of 11 with respect to xx is 00.
6x-2+06x−2+0
Step 1.4.2
Add 6x-26x−2 and 00.
6x-26x−2
6x-26x−2
Step 1.5
Evaluate the derivative at x=1x=1.
6(1)-26(1)−2
Step 1.6
Simplify.
Step 1.6.1
Multiply 66 by 11.
6-26−2
Step 1.6.2
Subtract 22 from 66.
44
44
44
Step 2
Step 2.1
Use the slope 44 and a given point (1,2)(1,2) to substitute for x1x1 and y1y1 in the point-slope form y-y1=m(x-x1)y−y1=m(x−x1), which is derived from the slope equation m=y2-y1x2-x1m=y2−y1x2−x1.
y-(2)=4⋅(x-(1))y−(2)=4⋅(x−(1))
Step 2.2
Simplify the equation and keep it in point-slope form.
y-2=4⋅(x-1)y−2=4⋅(x−1)
Step 2.3
Solve for yy.
Step 2.3.1
Simplify 4⋅(x-1)4⋅(x−1).
Step 2.3.1.1
Rewrite.
y-2=0+0+4⋅(x-1)y−2=0+0+4⋅(x−1)
Step 2.3.1.2
Simplify by adding zeros.
y-2=4⋅(x-1)y−2=4⋅(x−1)
Step 2.3.1.3
Apply the distributive property.
y-2=4x+4⋅-1y−2=4x+4⋅−1
Step 2.3.1.4
Multiply 44 by -1−1.
y-2=4x-4y−2=4x−4
y-2=4x-4y−2=4x−4
Step 2.3.2
Move all terms not containing yy to the right side of the equation.
Step 2.3.2.1
Add 22 to both sides of the equation.
y=4x-4+2y=4x−4+2
Step 2.3.2.2
Add -4−4 and 22.
y=4x-2y=4x−2
y=4x-2y=4x−2
y=4x-2y=4x−2
y=4x-2y=4x−2
Step 3