Calculus Examples

Find the Tangent Line at (2,-2) 2xy-2x+y=-14 ; (2,-2)
2xy-2x+y=-142xy2x+y=14 ; (2,-2)(2,2)
Step 1
Find the first derivative and evaluate at x=2x=2 and y=-2y=2 to find the slope of the tangent line.
Tap for more steps...
Step 1.1
Differentiate both sides of the equation.
ddx(2xy-2x+y)=ddx(-14)ddx(2xy2x+y)=ddx(14)
Step 1.2
Differentiate the left side of the equation.
Tap for more steps...
Step 1.2.1
By the Sum Rule, the derivative of 2xy-2x+y2xy2x+y with respect to xx is ddx[2xy]+ddx[-2x]+ddx[y]ddx[2xy]+ddx[2x]+ddx[y].
ddx[2xy]+ddx[-2x]+ddx[y]ddx[2xy]+ddx[2x]+ddx[y]
Step 1.2.2
Evaluate ddx[2xy]ddx[2xy].
Tap for more steps...
Step 1.2.2.1
Since 22 is constant with respect to xx, the derivative of 2xy2xy with respect to xx is 2ddx[xy]2ddx[xy].
2ddx[xy]+ddx[-2x]+ddx[y]2ddx[xy]+ddx[2x]+ddx[y]
Step 1.2.2.2
Differentiate using the Product Rule which states that ddx[f(x)g(x)]ddx[f(x)g(x)] is f(x)ddx[g(x)]+g(x)ddx[f(x)]f(x)ddx[g(x)]+g(x)ddx[f(x)] where f(x)=xf(x)=x and g(x)=yg(x)=y.
2(xddx[y]+yddx[x])+ddx[-2x]+ddx[y]2(xddx[y]+yddx[x])+ddx[2x]+ddx[y]
Step 1.2.2.3
Rewrite ddx[y] as y.
2(xy+yddx[x])+ddx[-2x]+ddx[y]
Step 1.2.2.4
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=1.
2(xy+y1)+ddx[-2x]+ddx[y]
Step 1.2.2.5
Multiply y by 1.
2(xy+y)+ddx[-2x]+ddx[y]
2(xy+y)+ddx[-2x]+ddx[y]
Step 1.2.3
Evaluate ddx[-2x].
Tap for more steps...
Step 1.2.3.1
Since -2 is constant with respect to x, the derivative of -2x with respect to x is -2ddx[x].
2(xy+y)-2ddx[x]+ddx[y]
Step 1.2.3.2
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=1.
2(xy+y)-21+ddx[y]
Step 1.2.3.3
Multiply -2 by 1.
2(xy+y)-2+ddx[y]
2(xy+y)-2+ddx[y]
Step 1.2.4
Rewrite ddx[y] as y.
2(xy+y)-2+y
Step 1.2.5
Apply the distributive property.
2xy+2y-2+y
2xy+2y-2+y
Step 1.3
Since -14 is constant with respect to x, the derivative of -14 with respect to x is 0.
0
Step 1.4
Reform the equation by setting the left side equal to the right side.
2xy+2y-2+y=0
Step 1.5
Solve for y.
Tap for more steps...
Step 1.5.1
Move all terms not containing y to the right side of the equation.
Tap for more steps...
Step 1.5.1.1
Subtract 2y from both sides of the equation.
2xy-2+y=-2y
Step 1.5.1.2
Add 2 to both sides of the equation.
2xy+y=-2y+2
2xy+y=-2y+2
Step 1.5.2
Factor y out of 2xy+y.
Tap for more steps...
Step 1.5.2.1
Factor y out of 2xy.
y(2x)+y=-2y+2
Step 1.5.2.2
Raise y to the power of 1.
y(2x)+y=-2y+2
Step 1.5.2.3
Factor y out of y1.
y(2x)+y1=-2y+2
Step 1.5.2.4
Factor y out of y(2x)+y1.
y(2x+1)=-2y+2
y(2x+1)=-2y+2
Step 1.5.3
Divide each term in y(2x+1)=-2y+2 by 2x+1 and simplify.
Tap for more steps...
Step 1.5.3.1
Divide each term in y(2x+1)=-2y+2 by 2x+1.
y(2x+1)2x+1=-2y2x+1+22x+1
Step 1.5.3.2
Simplify the left side.
Tap for more steps...
Step 1.5.3.2.1
Cancel the common factor of 2x+1.
Tap for more steps...
Step 1.5.3.2.1.1
Cancel the common factor.
y(2x+1)2x+1=-2y2x+1+22x+1
Step 1.5.3.2.1.2
Divide y by 1.
y=-2y2x+1+22x+1
y=-2y2x+1+22x+1
y=-2y2x+1+22x+1
Step 1.5.3.3
Simplify the right side.
Tap for more steps...
Step 1.5.3.3.1
Combine the numerators over the common denominator.
y=-2y+22x+1
Step 1.5.3.3.2
Factor 2 out of -2y+2.
Tap for more steps...
Step 1.5.3.3.2.1
Factor 2 out of -2y.
y=2(-y)+22x+1
Step 1.5.3.3.2.2
Factor 2 out of 2.
y=2(-y)+2(1)2x+1
Step 1.5.3.3.2.3
Factor 2 out of 2(-y)+2(1).
y=2(-y+1)2x+1
y=2(-y+1)2x+1
Step 1.5.3.3.3
Factor -1 out of -y.
y=2(-(y)+1)2x+1
Step 1.5.3.3.4
Rewrite 1 as -1(-1).
y=2(-(y)-1(-1))2x+1
Step 1.5.3.3.5
Factor -1 out of -(y)-1(-1).
y=2(-(y-1))2x+1
Step 1.5.3.3.6
Simplify the expression.
Tap for more steps...
Step 1.5.3.3.6.1
Rewrite -(y-1) as -1(y-1).
y=2(-1(y-1))2x+1
Step 1.5.3.3.6.2
Move the negative in front of the fraction.
y=-2(y-1)2x+1
y=-2(y-1)2x+1
y=-2(y-1)2x+1
y=-2(y-1)2x+1
y=-2(y-1)2x+1
Step 1.6
Replace y with dydx.
dydx=-2(y-1)2x+1
Step 1.7
Evaluate at x=2 and y=-2.
Tap for more steps...
Step 1.7.1
Replace the variable x with 2 in the expression.
-2(y-1)2(2)+1
Step 1.7.2
Replace the variable y with -2 in the expression.
-2((-2)-1)2(2)+1
Step 1.7.3
Subtract 1 from -2.
-2-32(2)+1
Step 1.7.4
Simplify the denominator.
Tap for more steps...
Step 1.7.4.1
Multiply 2 by 2.
-2-34+1
Step 1.7.4.2
Add 4 and 1.
-2-35
-2-35
Step 1.7.5
Simplify the expression.
Tap for more steps...
Step 1.7.5.1
Multiply 2 by -3.
--65
Step 1.7.5.2
Move the negative in front of the fraction.
--65
--65
Step 1.7.6
Multiply --65.
Tap for more steps...
Step 1.7.6.1
Multiply -1 by -1.
1(65)
Step 1.7.6.2
Multiply 65 by 1.
65
65
65
65
Step 2
Plug the slope and point values into the point-slope formula and solve for y.
Tap for more steps...
Step 2.1
Use the slope 65 and a given point (2,-2) to substitute for x1 and y1 in the point-slope form y-y1=m(x-x1), which is derived from the slope equation m=y2-y1x2-x1.
y-(-2)=65(x-(2))
Step 2.2
Simplify the equation and keep it in point-slope form.
y+2=65(x-2)
Step 2.3
Solve for y.
Tap for more steps...
Step 2.3.1
Simplify 65(x-2).
Tap for more steps...
Step 2.3.1.1
Rewrite.
y+2=0+0+65(x-2)
Step 2.3.1.2
Simplify by adding zeros.
y+2=65(x-2)
Step 2.3.1.3
Apply the distributive property.
y+2=65x+65-2
Step 2.3.1.4
Combine 65 and x.
y+2=6x5+65-2
Step 2.3.1.5
Multiply 65-2.
Tap for more steps...
Step 2.3.1.5.1
Combine 65 and -2.
y+2=6x5+6-25
Step 2.3.1.5.2
Multiply 6 by -2.
y+2=6x5+-125
y+2=6x5+-125
Step 2.3.1.6
Move the negative in front of the fraction.
y+2=6x5-125
y+2=6x5-125
Step 2.3.2
Move all terms not containing y to the right side of the equation.
Tap for more steps...
Step 2.3.2.1
Subtract 2 from both sides of the equation.
y=6x5-125-2
Step 2.3.2.2
To write -2 as a fraction with a common denominator, multiply by 55.
y=6x5-125-255
Step 2.3.2.3
Combine -2 and 55.
y=6x5-125+-255
Step 2.3.2.4
Combine the numerators over the common denominator.
y=6x5+-12-255
Step 2.3.2.5
Simplify the numerator.
Tap for more steps...
Step 2.3.2.5.1
Multiply -2 by 5.
y=6x5+-12-105
Step 2.3.2.5.2
Subtract 10 from -12.
y=6x5+-225
y=6x5+-225
Step 2.3.2.6
Move the negative in front of the fraction.
y=6x5-225
y=6x5-225
Step 2.3.3
Reorder terms.
y=65x-225
y=65x-225
y=65x-225
Step 3
 [x2  12  π  xdx ]