Calculus Examples

Find the Tangent Line at (π/6,2(√(3)/3)) y=sec(x) , (pi/6,2( square root of 3)/3)
y=sec(x)y=sec(x) , (π6,233)(π6,233)
Step 1
Find the first derivative and evaluate at x=π6x=π6 and y=2(33)y=2(33) to find the slope of the tangent line.
Tap for more steps...
Step 1.1
The derivative of sec(x)sec(x) with respect to xx is sec(x)tan(x)sec(x)tan(x).
sec(x)tan(x)sec(x)tan(x)
Step 1.2
Evaluate the derivative at x=π6x=π6.
sec(π6)tan(π6)sec(π6)tan(π6)
Step 1.3
Simplify.
Tap for more steps...
Step 1.3.1
The exact value of sec(π6)sec(π6) is 2323.
23tan(π6)23tan(π6)
Step 1.3.2
Multiply 2323 by 3333.
2333tan(π6)2333tan(π6)
Step 1.3.3
Combine and simplify the denominator.
Tap for more steps...
Step 1.3.3.1
Multiply 2323 by 3333.
2333tan(π6)2333tan(π6)
Step 1.3.3.2
Raise 33 to the power of 11.
23313tan(π6)23313tan(π6)
Step 1.3.3.3
Raise 33 to the power of 11.
233131tan(π6)233131tan(π6)
Step 1.3.3.4
Use the power rule aman=am+naman=am+n to combine exponents.
2331+1tan(π6)2331+1tan(π6)
Step 1.3.3.5
Add 11 and 11.
2332tan(π6)2332tan(π6)
Step 1.3.3.6
Rewrite 3232 as 33.
Tap for more steps...
Step 1.3.3.6.1
Use nax=axnnax=axn to rewrite 33 as 312312.
23(312)2tan(π6)23(312)2tan(π6)
Step 1.3.3.6.2
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
233122tan(π6)233122tan(π6)
Step 1.3.3.6.3
Combine 1212 and 22.
23322tan(π6)23322tan(π6)
Step 1.3.3.6.4
Cancel the common factor of 22.
Tap for more steps...
Step 1.3.3.6.4.1
Cancel the common factor.
23322tan(π6)
Step 1.3.3.6.4.2
Rewrite the expression.
2331tan(π6)
2331tan(π6)
Step 1.3.3.6.5
Evaluate the exponent.
233tan(π6)
233tan(π6)
233tan(π6)
Step 1.3.4
The exact value of tan(π6) is 33.
23333
Step 1.3.5
Multiply 23333.
Tap for more steps...
Step 1.3.5.1
Multiply 233 by 33.
23333
Step 1.3.5.2
Raise 3 to the power of 1.
2(313)33
Step 1.3.5.3
Raise 3 to the power of 1.
2(3131)33
Step 1.3.5.4
Use the power rule aman=am+n to combine exponents.
231+133
Step 1.3.5.5
Add 1 and 1.
23233
Step 1.3.5.6
Multiply 3 by 3.
2329
2329
Step 1.3.6
Rewrite 32 as 3.
Tap for more steps...
Step 1.3.6.1
Use nax=axn to rewrite 3 as 312.
2(312)29
Step 1.3.6.2
Apply the power rule and multiply exponents, (am)n=amn.
231229
Step 1.3.6.3
Combine 12 and 2.
23229
Step 1.3.6.4
Cancel the common factor of 2.
Tap for more steps...
Step 1.3.6.4.1
Cancel the common factor.
23229
Step 1.3.6.4.2
Rewrite the expression.
2319
2319
Step 1.3.6.5
Evaluate the exponent.
239
239
Step 1.3.7
Multiply 2 by 3.
69
Step 1.3.8
Cancel the common factor of 6 and 9.
Tap for more steps...
Step 1.3.8.1
Factor 3 out of 6.
3(2)9
Step 1.3.8.2
Cancel the common factors.
Tap for more steps...
Step 1.3.8.2.1
Factor 3 out of 9.
3233
Step 1.3.8.2.2
Cancel the common factor.
3233
Step 1.3.8.2.3
Rewrite the expression.
23
23
23
23
23
Step 2
Plug the slope and point values into the point-slope formula and solve for y.
Tap for more steps...
Step 2.1
Use the slope 23 and a given point (π6,2(33)) to substitute for x1 and y1 in the point-slope form y-y1=m(x-x1), which is derived from the slope equation m=y2-y1x2-x1.
y-(2(33))=23(x-(π6))
Step 2.2
Simplify the equation and keep it in point-slope form.
y-233=23(x-π6)
Step 2.3
Solve for y.
Tap for more steps...
Step 2.3.1
Simplify 23(x-π6).
Tap for more steps...
Step 2.3.1.1
Rewrite.
y-233=0+0+23(x-π6)
Step 2.3.1.2
Simplify by adding zeros.
y-233=23(x-π6)
Step 2.3.1.3
Apply the distributive property.
y-233=23x+23(-π6)
Step 2.3.1.4
Combine 23 and x.
y-233=2x3+23(-π6)
Step 2.3.1.5
Cancel the common factor of 2.
Tap for more steps...
Step 2.3.1.5.1
Move the leading negative in -π6 into the numerator.
y-233=2x3+23-π6
Step 2.3.1.5.2
Factor 2 out of 6.
y-233=2x3+23-π2(3)
Step 2.3.1.5.3
Cancel the common factor.
y-233=2x3+23-π23
Step 2.3.1.5.4
Rewrite the expression.
y-233=2x3+13-π3
y-233=2x3+13-π3
Step 2.3.1.6
Multiply 13 by -π3.
y-233=2x3+-π33
Step 2.3.1.7
Simplify the expression.
Tap for more steps...
Step 2.3.1.7.1
Multiply 3 by 3.
y-233=2x3+-π9
Step 2.3.1.7.2
Move the negative in front of the fraction.
y-233=2x3-π9
y-233=2x3-π9
y-233=2x3-π9
Step 2.3.2
Add 233 to both sides of the equation.
y=2x3-π9+233
Step 2.3.3
Write in y=mx+b form.
Tap for more steps...
Step 2.3.3.1
To write 233 as a fraction with a common denominator, multiply by 33.
y=2x3-π9+23333
Step 2.3.3.2
Write each expression with a common denominator of 9, by multiplying each by an appropriate factor of 1.
Tap for more steps...
Step 2.3.3.2.1
Multiply 233 by 33.
y=2x3-π9+23333
Step 2.3.3.2.2
Multiply 3 by 3.
y=2x3-π9+2339
y=2x3-π9+2339
Step 2.3.3.3
Combine the numerators over the common denominator.
y=2x3+-π+2339
Step 2.3.3.4
Multiply 3 by 2.
y=2x3+-π+639
Step 2.3.3.5
Factor -1 out of -π.
y=2x3+-(π)+639
Step 2.3.3.6
Factor -1 out of 63.
y=2x3+-(π)-(-63)9
Step 2.3.3.7
Factor -1 out of -(π)-(-63).
y=2x3+-(π-63)9
Step 2.3.3.8
Rewrite -(π-63) as -1(π-63).
y=2x3+-1(π-63)9
Step 2.3.3.9
Move the negative in front of the fraction.
y=2x3-π-639
Step 2.3.3.10
Reorder terms.
y=23x-π-639
y=23x-π-639
y=23x-π-639
y=23x-π-639
Step 3
 [x2  12  π  xdx ]