Enter a problem...
Calculus Examples
y=sec(x)y=sec(x) , (π6,2√33)(π6,2√33)
Step 1
Step 1.1
The derivative of sec(x)sec(x) with respect to xx is sec(x)tan(x)sec(x)tan(x).
sec(x)tan(x)sec(x)tan(x)
Step 1.2
Evaluate the derivative at x=π6x=π6.
sec(π6)tan(π6)sec(π6)tan(π6)
Step 1.3
Simplify.
Step 1.3.1
The exact value of sec(π6)sec(π6) is 2√32√3.
2√3tan(π6)2√3tan(π6)
Step 1.3.2
Multiply 2√32√3 by √3√3√3√3.
2√3⋅√3√3tan(π6)2√3⋅√3√3tan(π6)
Step 1.3.3
Combine and simplify the denominator.
Step 1.3.3.1
Multiply 2√32√3 by √3√3√3√3.
2√3√3√3tan(π6)2√3√3√3tan(π6)
Step 1.3.3.2
Raise √3√3 to the power of 11.
2√3√31√3tan(π6)2√3√31√3tan(π6)
Step 1.3.3.3
Raise √3√3 to the power of 11.
2√3√31√31tan(π6)2√3√31√31tan(π6)
Step 1.3.3.4
Use the power rule aman=am+naman=am+n to combine exponents.
2√3√31+1tan(π6)2√3√31+1tan(π6)
Step 1.3.3.5
Add 11 and 11.
2√3√32tan(π6)2√3√32tan(π6)
Step 1.3.3.6
Rewrite √32√32 as 33.
Step 1.3.3.6.1
Use n√ax=axnn√ax=axn to rewrite √3√3 as 312312.
2√3(312)2tan(π6)2√3(312)2tan(π6)
Step 1.3.3.6.2
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
2√3312⋅2tan(π6)2√3312⋅2tan(π6)
Step 1.3.3.6.3
Combine 1212 and 22.
2√3322tan(π6)2√3322tan(π6)
Step 1.3.3.6.4
Cancel the common factor of 22.
Step 1.3.3.6.4.1
Cancel the common factor.
2√3322tan(π6)
Step 1.3.3.6.4.2
Rewrite the expression.
2√331tan(π6)
2√331tan(π6)
Step 1.3.3.6.5
Evaluate the exponent.
2√33tan(π6)
2√33tan(π6)
2√33tan(π6)
Step 1.3.4
The exact value of tan(π6) is √33.
2√33⋅√33
Step 1.3.5
Multiply 2√33⋅√33.
Step 1.3.5.1
Multiply 2√33 by √33.
2√3√33⋅3
Step 1.3.5.2
Raise √3 to the power of 1.
2(√31√3)3⋅3
Step 1.3.5.3
Raise √3 to the power of 1.
2(√31√31)3⋅3
Step 1.3.5.4
Use the power rule aman=am+n to combine exponents.
2√31+13⋅3
Step 1.3.5.5
Add 1 and 1.
2√323⋅3
Step 1.3.5.6
Multiply 3 by 3.
2√329
2√329
Step 1.3.6
Rewrite √32 as 3.
Step 1.3.6.1
Use n√ax=axn to rewrite √3 as 312.
2(312)29
Step 1.3.6.2
Apply the power rule and multiply exponents, (am)n=amn.
2⋅312⋅29
Step 1.3.6.3
Combine 12 and 2.
2⋅3229
Step 1.3.6.4
Cancel the common factor of 2.
Step 1.3.6.4.1
Cancel the common factor.
2⋅3229
Step 1.3.6.4.2
Rewrite the expression.
2⋅319
2⋅319
Step 1.3.6.5
Evaluate the exponent.
2⋅39
2⋅39
Step 1.3.7
Multiply 2 by 3.
69
Step 1.3.8
Cancel the common factor of 6 and 9.
Step 1.3.8.1
Factor 3 out of 6.
3(2)9
Step 1.3.8.2
Cancel the common factors.
Step 1.3.8.2.1
Factor 3 out of 9.
3⋅23⋅3
Step 1.3.8.2.2
Cancel the common factor.
3⋅23⋅3
Step 1.3.8.2.3
Rewrite the expression.
23
23
23
23
23
Step 2
Step 2.1
Use the slope 23 and a given point (π6,2(√33)) to substitute for x1 and y1 in the point-slope form y-y1=m(x-x1), which is derived from the slope equation m=y2-y1x2-x1.
y-(2(√33))=23⋅(x-(π6))
Step 2.2
Simplify the equation and keep it in point-slope form.
y-2√33=23⋅(x-π6)
Step 2.3
Solve for y.
Step 2.3.1
Simplify 23⋅(x-π6).
Step 2.3.1.1
Rewrite.
y-2√33=0+0+23⋅(x-π6)
Step 2.3.1.2
Simplify by adding zeros.
y-2√33=23⋅(x-π6)
Step 2.3.1.3
Apply the distributive property.
y-2√33=23x+23(-π6)
Step 2.3.1.4
Combine 23 and x.
y-2√33=2x3+23(-π6)
Step 2.3.1.5
Cancel the common factor of 2.
Step 2.3.1.5.1
Move the leading negative in -π6 into the numerator.
y-2√33=2x3+23⋅-π6
Step 2.3.1.5.2
Factor 2 out of 6.
y-2√33=2x3+23⋅-π2(3)
Step 2.3.1.5.3
Cancel the common factor.
y-2√33=2x3+23⋅-π2⋅3
Step 2.3.1.5.4
Rewrite the expression.
y-2√33=2x3+13⋅-π3
y-2√33=2x3+13⋅-π3
Step 2.3.1.6
Multiply 13 by -π3.
y-2√33=2x3+-π3⋅3
Step 2.3.1.7
Simplify the expression.
Step 2.3.1.7.1
Multiply 3 by 3.
y-2√33=2x3+-π9
Step 2.3.1.7.2
Move the negative in front of the fraction.
y-2√33=2x3-π9
y-2√33=2x3-π9
y-2√33=2x3-π9
Step 2.3.2
Add 2√33 to both sides of the equation.
y=2x3-π9+2√33
Step 2.3.3
Write in y=mx+b form.
Step 2.3.3.1
To write 2√33 as a fraction with a common denominator, multiply by 33.
y=2x3-π9+2√33⋅33
Step 2.3.3.2
Write each expression with a common denominator of 9, by multiplying each by an appropriate factor of 1.
Step 2.3.3.2.1
Multiply 2√33 by 33.
y=2x3-π9+2√3⋅33⋅3
Step 2.3.3.2.2
Multiply 3 by 3.
y=2x3-π9+2√3⋅39
y=2x3-π9+2√3⋅39
Step 2.3.3.3
Combine the numerators over the common denominator.
y=2x3+-π+2√3⋅39
Step 2.3.3.4
Multiply 3 by 2.
y=2x3+-π+6√39
Step 2.3.3.5
Factor -1 out of -π.
y=2x3+-(π)+6√39
Step 2.3.3.6
Factor -1 out of 6√3.
y=2x3+-(π)-(-6√3)9
Step 2.3.3.7
Factor -1 out of -(π)-(-6√3).
y=2x3+-(π-6√3)9
Step 2.3.3.8
Rewrite -(π-6√3) as -1(π-6√3).
y=2x3+-1(π-6√3)9
Step 2.3.3.9
Move the negative in front of the fraction.
y=2x3-π-6√39
Step 2.3.3.10
Reorder terms.
y=23x-π-6√39
y=23x-π-6√39
y=23x-π-6√39
y=23x-π-6√39
Step 3