Enter a problem...
Calculus Examples
f(x)=√7x+11f(x)=√7x+11 , (2,5)(2,5)
Step 1
Step 1.1
Use n√ax=axnn√ax=axn to rewrite √7x+11√7x+11 as (7x+11)12(7x+11)12.
ddx[(7x+11)12]ddx[(7x+11)12]
Step 1.2
Differentiate using the chain rule, which states that ddx[f(g(x))]ddx[f(g(x))] is f′(g(x))g′(x) where f(x)=x12 and g(x)=7x+11.
Step 1.2.1
To apply the Chain Rule, set u as 7x+11.
ddu[u12]ddx[7x+11]
Step 1.2.2
Differentiate using the Power Rule which states that ddu[un] is nun-1 where n=12.
12u12-1ddx[7x+11]
Step 1.2.3
Replace all occurrences of u with 7x+11.
12(7x+11)12-1ddx[7x+11]
12(7x+11)12-1ddx[7x+11]
Step 1.3
To write -1 as a fraction with a common denominator, multiply by 22.
12(7x+11)12-1⋅22ddx[7x+11]
Step 1.4
Combine -1 and 22.
12(7x+11)12+-1⋅22ddx[7x+11]
Step 1.5
Combine the numerators over the common denominator.
12(7x+11)1-1⋅22ddx[7x+11]
Step 1.6
Simplify the numerator.
Step 1.6.1
Multiply -1 by 2.
12(7x+11)1-22ddx[7x+11]
Step 1.6.2
Subtract 2 from 1.
12(7x+11)-12ddx[7x+11]
12(7x+11)-12ddx[7x+11]
Step 1.7
Combine fractions.
Step 1.7.1
Move the negative in front of the fraction.
12(7x+11)-12ddx[7x+11]
Step 1.7.2
Combine 12 and (7x+11)-12.
(7x+11)-122ddx[7x+11]
Step 1.7.3
Move (7x+11)-12 to the denominator using the negative exponent rule b-n=1bn.
12(7x+11)12ddx[7x+11]
12(7x+11)12ddx[7x+11]
Step 1.8
By the Sum Rule, the derivative of 7x+11 with respect to x is ddx[7x]+ddx[11].
12(7x+11)12(ddx[7x]+ddx[11])
Step 1.9
Since 7 is constant with respect to x, the derivative of 7x with respect to x is 7ddx[x].
12(7x+11)12(7ddx[x]+ddx[11])
Step 1.10
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=1.
12(7x+11)12(7⋅1+ddx[11])
Step 1.11
Multiply 7 by 1.
12(7x+11)12(7+ddx[11])
Step 1.12
Since 11 is constant with respect to x, the derivative of 11 with respect to x is 0.
12(7x+11)12(7+0)
Step 1.13
Combine fractions.
Step 1.13.1
Add 7 and 0.
12(7x+11)12⋅7
Step 1.13.2
Combine 12(7x+11)12 and 7.
72(7x+11)12
72(7x+11)12
Step 1.14
Evaluate the derivative at x=2.
72(7(2)+11)12
Step 1.15
Simplify.
Step 1.15.1
Simplify the denominator.
Step 1.15.1.1
Multiply 7 by 2.
72(14+11)12
Step 1.15.1.2
Add 14 and 11.
72⋅2512
Step 1.15.1.3
Rewrite 25 as 52.
72⋅(52)12
Step 1.15.1.4
Apply the power rule and multiply exponents, (am)n=amn.
72⋅52(12)
Step 1.15.1.5
Cancel the common factor of 2.
Step 1.15.1.5.1
Cancel the common factor.
72⋅52(12)
Step 1.15.1.5.2
Rewrite the expression.
72⋅51
72⋅51
Step 1.15.1.6
Evaluate the exponent.
72⋅5
72⋅5
Step 1.15.2
Multiply 2 by 5.
710
710
710
Step 2
Step 2.1
Use the slope 710 and a given point (2,5) to substitute for x1 and y1 in the point-slope form y-y1=m(x-x1), which is derived from the slope equation m=y2-y1x2-x1.
y-(5)=710⋅(x-(2))
Step 2.2
Simplify the equation and keep it in point-slope form.
y-5=710⋅(x-2)
Step 2.3
Solve for y.
Step 2.3.1
Simplify 710⋅(x-2).
Step 2.3.1.1
Rewrite.
y-5=0+0+710⋅(x-2)
Step 2.3.1.2
Simplify by adding zeros.
y-5=710⋅(x-2)
Step 2.3.1.3
Apply the distributive property.
y-5=710x+710⋅-2
Step 2.3.1.4
Combine 710 and x.
y-5=7x10+710⋅-2
Step 2.3.1.5
Cancel the common factor of 2.
Step 2.3.1.5.1
Factor 2 out of 10.
y-5=7x10+72(5)⋅-2
Step 2.3.1.5.2
Factor 2 out of -2.
y-5=7x10+72⋅5⋅(2⋅-1)
Step 2.3.1.5.3
Cancel the common factor.
y-5=7x10+72⋅5⋅(2⋅-1)
Step 2.3.1.5.4
Rewrite the expression.
y-5=7x10+75⋅-1
y-5=7x10+75⋅-1
Step 2.3.1.6
Combine 75 and -1.
y-5=7x10+7⋅-15
Step 2.3.1.7
Simplify the expression.
Step 2.3.1.7.1
Multiply 7 by -1.
y-5=7x10+-75
Step 2.3.1.7.2
Move the negative in front of the fraction.
y-5=7x10-75
y-5=7x10-75
y-5=7x10-75
Step 2.3.2
Move all terms not containing y to the right side of the equation.
Step 2.3.2.1
Add 5 to both sides of the equation.
y=7x10-75+5
Step 2.3.2.2
To write 5 as a fraction with a common denominator, multiply by 55.
y=7x10-75+5⋅55
Step 2.3.2.3
Combine 5 and 55.
y=7x10-75+5⋅55
Step 2.3.2.4
Combine the numerators over the common denominator.
y=7x10+-7+5⋅55
Step 2.3.2.5
Simplify the numerator.
Step 2.3.2.5.1
Multiply 5 by 5.
y=7x10+-7+255
Step 2.3.2.5.2
Add -7 and 25.
y=7x10+185
y=7x10+185
y=7x10+185
Step 2.3.3
Reorder terms.
y=710x+185
y=710x+185
y=710x+185
Step 3