Calculus Examples

Find the Tangent Line at x=0 f(x)=2x^2-1 ; x=0
;
Step 1
Find the corresponding -value to .
Tap for more steps...
Step 1.1
Substitute in for .
Step 1.2
Solve for .
Tap for more steps...
Step 1.2.1
Remove parentheses.
Step 1.2.2
Remove parentheses.
Step 1.2.3
Simplify .
Tap for more steps...
Step 1.2.3.1
Simplify each term.
Tap for more steps...
Step 1.2.3.1.1
Raising to any positive power yields .
Step 1.2.3.1.2
Multiply by .
Step 1.2.3.2
Subtract from .
Step 2
Find the first derivative and evaluate at and to find the slope of the tangent line.
Tap for more steps...
Step 2.1
By the Sum Rule, the derivative of with respect to is .
Step 2.2
Evaluate .
Tap for more steps...
Step 2.2.1
Since is constant with respect to , the derivative of with respect to is .
Step 2.2.2
Differentiate using the Power Rule which states that is where .
Step 2.2.3
Multiply by .
Step 2.3
Differentiate using the Constant Rule.
Tap for more steps...
Step 2.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 2.3.2
Add and .
Step 2.4
Evaluate the derivative at .
Step 2.5
Multiply by .
Step 3
Plug the slope and point values into the point-slope formula and solve for .
Tap for more steps...
Step 3.1
Use the slope and a given point to substitute for and in the point-slope form , which is derived from the slope equation .
Step 3.2
Simplify the equation and keep it in point-slope form.
Step 3.3
Solve for .
Tap for more steps...
Step 3.3.1
Simplify .
Tap for more steps...
Step 3.3.1.1
Add and .
Step 3.3.1.2
Multiply by .
Step 3.3.2
Subtract from both sides of the equation.
Step 4