Calculus Examples

Find the Tangent Line at (-1,6) f(x)=5/( cube root of x^2)-x ; , (-1,6)
; ,
Step 1
Find the first derivative and evaluate at and to find the slope of the tangent line.
Tap for more steps...
Step 1.1
By the Sum Rule, the derivative of with respect to is .
Step 1.2
Evaluate .
Tap for more steps...
Step 1.2.1
Use to rewrite as .
Step 1.2.2
Since is constant with respect to , the derivative of with respect to is .
Step 1.2.3
Rewrite as .
Step 1.2.4
Differentiate using the chain rule, which states that is where and .
Tap for more steps...
Step 1.2.4.1
To apply the Chain Rule, set as .
Step 1.2.4.2
Differentiate using the Power Rule which states that is where .
Step 1.2.4.3
Replace all occurrences of with .
Step 1.2.5
Differentiate using the Power Rule which states that is where .
Step 1.2.6
Multiply the exponents in .
Tap for more steps...
Step 1.2.6.1
Apply the power rule and multiply exponents, .
Step 1.2.6.2
Multiply .
Tap for more steps...
Step 1.2.6.2.1
Combine and .
Step 1.2.6.2.2
Multiply by .
Step 1.2.6.3
Move the negative in front of the fraction.
Step 1.2.7
To write as a fraction with a common denominator, multiply by .
Step 1.2.8
Combine and .
Step 1.2.9
Combine the numerators over the common denominator.
Step 1.2.10
Simplify the numerator.
Tap for more steps...
Step 1.2.10.1
Multiply by .
Step 1.2.10.2
Subtract from .
Step 1.2.11
Move the negative in front of the fraction.
Step 1.2.12
Combine and .
Step 1.2.13
Combine and .
Step 1.2.14
Multiply by by adding the exponents.
Tap for more steps...
Step 1.2.14.1
Move .
Step 1.2.14.2
Use the power rule to combine exponents.
Step 1.2.14.3
Combine the numerators over the common denominator.
Step 1.2.14.4
Subtract from .
Step 1.2.14.5
Move the negative in front of the fraction.
Step 1.2.15
Move to the denominator using the negative exponent rule .
Step 1.2.16
Multiply by .
Step 1.2.17
Combine and .
Step 1.2.18
Multiply by .
Step 1.2.19
Move the negative in front of the fraction.
Step 1.3
Evaluate .
Tap for more steps...
Step 1.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.3.2
Differentiate using the Power Rule which states that is where .
Step 1.3.3
Multiply by .
Step 1.4
Reorder terms.
Step 1.5
Evaluate the derivative at .
Step 1.6
Simplify.
Tap for more steps...
Step 1.6.1
Simplify each term.
Tap for more steps...
Step 1.6.1.1
Simplify the denominator.
Tap for more steps...
Step 1.6.1.1.1
Rewrite as .
Step 1.6.1.1.2
Apply the power rule and multiply exponents, .
Step 1.6.1.1.3
Cancel the common factor of .
Tap for more steps...
Step 1.6.1.1.3.1
Cancel the common factor.
Step 1.6.1.1.3.2
Rewrite the expression.
Step 1.6.1.1.4
Raise to the power of .
Step 1.6.1.2
Multiply by .
Step 1.6.1.3
Move the negative in front of the fraction.
Step 1.6.1.4
Multiply .
Tap for more steps...
Step 1.6.1.4.1
Multiply by .
Step 1.6.1.4.2
Multiply by .
Step 1.6.2
To write as a fraction with a common denominator, multiply by .
Step 1.6.3
Combine and .
Step 1.6.4
Combine the numerators over the common denominator.
Step 1.6.5
Simplify the numerator.
Tap for more steps...
Step 1.6.5.1
Multiply by .
Step 1.6.5.2
Add and .
Step 2
Plug the slope and point values into the point-slope formula and solve for .
Tap for more steps...
Step 2.1
Use the slope and a given point to substitute for and in the point-slope form , which is derived from the slope equation .
Step 2.2
Simplify the equation and keep it in point-slope form.
Step 2.3
Solve for .
Tap for more steps...
Step 2.3.1
Simplify .
Tap for more steps...
Step 2.3.1.1
Rewrite.
Step 2.3.1.2
Simplify by adding zeros.
Step 2.3.1.3
Apply the distributive property.
Step 2.3.1.4
Combine and .
Step 2.3.1.5
Multiply by .
Step 2.3.2
Move all terms not containing to the right side of the equation.
Tap for more steps...
Step 2.3.2.1
Add to both sides of the equation.
Step 2.3.2.2
To write as a fraction with a common denominator, multiply by .
Step 2.3.2.3
Combine and .
Step 2.3.2.4
Combine the numerators over the common denominator.
Step 2.3.2.5
Simplify the numerator.
Tap for more steps...
Step 2.3.2.5.1
Multiply by .
Step 2.3.2.5.2
Add and .
Step 2.3.3
Reorder terms.
Step 3