Enter a problem...
Calculus Examples
f(x)=53√x2-xf(x)=53√x2−x ; , (-1,6)(−1,6)
Step 1
Step 1.1
By the Sum Rule, the derivative of 53√x2-x53√x2−x with respect to xx is ddx[53√x2]+ddx[-x]ddx[53√x2]+ddx[−x].
ddx[53√x2]+ddx[-x]ddx[53√x2]+ddx[−x]
Step 1.2
Evaluate ddx[53√x2]ddx[53√x2].
Step 1.2.1
Use n√ax=axnn√ax=axn to rewrite 3√x23√x2 as x23x23.
ddx[5x23]+ddx[-x]ddx[5x23]+ddx[−x]
Step 1.2.2
Since 55 is constant with respect to xx, the derivative of 5x235x23 with respect to xx is 5ddx[1x23]5ddx[1x23].
5ddx[1x23]+ddx[-x]5ddx[1x23]+ddx[−x]
Step 1.2.3
Rewrite 1x231x23 as (x23)-1.
5ddx[(x23)-1]+ddx[-x]
Step 1.2.4
Differentiate using the chain rule, which states that ddx[f(g(x))] is f′(g(x))g′(x) where f(x)=x-1 and g(x)=x23.
Step 1.2.4.1
To apply the Chain Rule, set u as x23.
5(ddu[u-1]ddx[x23])+ddx[-x]
Step 1.2.4.2
Differentiate using the Power Rule which states that ddu[un] is nun-1 where n=-1.
5(-u-2ddx[x23])+ddx[-x]
Step 1.2.4.3
Replace all occurrences of u with x23.
5(-(x23)-2ddx[x23])+ddx[-x]
5(-(x23)-2ddx[x23])+ddx[-x]
Step 1.2.5
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=23.
5(-(x23)-2(23x23-1))+ddx[-x]
Step 1.2.6
Multiply the exponents in (x23)-2.
Step 1.2.6.1
Apply the power rule and multiply exponents, (am)n=amn.
5(-x23⋅-2(23x23-1))+ddx[-x]
Step 1.2.6.2
Multiply 23⋅-2.
Step 1.2.6.2.1
Combine 23 and -2.
5(-x2⋅-23(23x23-1))+ddx[-x]
Step 1.2.6.2.2
Multiply 2 by -2.
5(-x-43(23x23-1))+ddx[-x]
5(-x-43(23x23-1))+ddx[-x]
Step 1.2.6.3
Move the negative in front of the fraction.
5(-x-43(23x23-1))+ddx[-x]
5(-x-43(23x23-1))+ddx[-x]
Step 1.2.7
To write -1 as a fraction with a common denominator, multiply by 33.
5(-x-43(23x23-1⋅33))+ddx[-x]
Step 1.2.8
Combine -1 and 33.
5(-x-43(23x23+-1⋅33))+ddx[-x]
Step 1.2.9
Combine the numerators over the common denominator.
5(-x-43(23x2-1⋅33))+ddx[-x]
Step 1.2.10
Simplify the numerator.
Step 1.2.10.1
Multiply -1 by 3.
5(-x-43(23x2-33))+ddx[-x]
Step 1.2.10.2
Subtract 3 from 2.
5(-x-43(23x-13))+ddx[-x]
5(-x-43(23x-13))+ddx[-x]
Step 1.2.11
Move the negative in front of the fraction.
5(-x-43(23x-13))+ddx[-x]
Step 1.2.12
Combine 23 and x-13.
5(-x-432x-133)+ddx[-x]
Step 1.2.13
Combine 2x-133 and x-43.
5(-2x-13x-433)+ddx[-x]
Step 1.2.14
Multiply x-13 by x-43 by adding the exponents.
Step 1.2.14.1
Move x-43.
5(-2(x-43x-13)3)+ddx[-x]
Step 1.2.14.2
Use the power rule aman=am+n to combine exponents.
5(-2x-43-133)+ddx[-x]
Step 1.2.14.3
Combine the numerators over the common denominator.
5(-2x-4-133)+ddx[-x]
Step 1.2.14.4
Subtract 1 from -4.
5(-2x-533)+ddx[-x]
Step 1.2.14.5
Move the negative in front of the fraction.
5(-2x-533)+ddx[-x]
5(-2x-533)+ddx[-x]
Step 1.2.15
Move x-53 to the denominator using the negative exponent rule b-n=1bn.
5(-23x53)+ddx[-x]
Step 1.2.16
Multiply -1 by 5.
-523x53+ddx[-x]
Step 1.2.17
Combine -5 and 23x53.
-5⋅23x53+ddx[-x]
Step 1.2.18
Multiply -5 by 2.
-103x53+ddx[-x]
Step 1.2.19
Move the negative in front of the fraction.
-103x53+ddx[-x]
-103x53+ddx[-x]
Step 1.3
Evaluate ddx[-x].
Step 1.3.1
Since -1 is constant with respect to x, the derivative of -x with respect to x is -ddx[x].
-103x53-ddx[x]
Step 1.3.2
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=1.
-103x53-1⋅1
Step 1.3.3
Multiply -1 by 1.
-103x53-1
-103x53-1
Step 1.4
Reorder terms.
-1-103x53
Step 1.5
Evaluate the derivative at x=-1.
-1-103(-1)53
Step 1.6
Simplify.
Step 1.6.1
Simplify each term.
Step 1.6.1.1
Simplify the denominator.
Step 1.6.1.1.1
Rewrite -1 as (-1)3.
-1-103((-1)3)53
Step 1.6.1.1.2
Apply the power rule and multiply exponents, (am)n=amn.
-1-103(-1)3(53)
Step 1.6.1.1.3
Cancel the common factor of 3.
Step 1.6.1.1.3.1
Cancel the common factor.
-1-103(-1)3(53)
Step 1.6.1.1.3.2
Rewrite the expression.
-1-103(-1)5
-1-103(-1)5
Step 1.6.1.1.4
Raise -1 to the power of 5.
-1-103⋅-1
-1-103⋅-1
Step 1.6.1.2
Multiply 3 by -1.
-1-10-3
Step 1.6.1.3
Move the negative in front of the fraction.
-1--103
Step 1.6.1.4
Multiply --103.
Step 1.6.1.4.1
Multiply -1 by -1.
-1+1(103)
Step 1.6.1.4.2
Multiply 103 by 1.
-1+103
-1+103
-1+103
Step 1.6.2
To write -1 as a fraction with a common denominator, multiply by 33.
-1⋅33+103
Step 1.6.3
Combine -1 and 33.
-1⋅33+103
Step 1.6.4
Combine the numerators over the common denominator.
-1⋅3+103
Step 1.6.5
Simplify the numerator.
Step 1.6.5.1
Multiply -1 by 3.
-3+103
Step 1.6.5.2
Add -3 and 10.
73
73
73
73
Step 2
Step 2.1
Use the slope 73 and a given point (-1,6) to substitute for x1 and y1 in the point-slope form y-y1=m(x-x1), which is derived from the slope equation m=y2-y1x2-x1.
y-(6)=73⋅(x-(-1))
Step 2.2
Simplify the equation and keep it in point-slope form.
y-6=73⋅(x+1)
Step 2.3
Solve for y.
Step 2.3.1
Simplify 73⋅(x+1).
Step 2.3.1.1
Rewrite.
y-6=0+0+73⋅(x+1)
Step 2.3.1.2
Simplify by adding zeros.
y-6=73⋅(x+1)
Step 2.3.1.3
Apply the distributive property.
y-6=73x+73⋅1
Step 2.3.1.4
Combine 73 and x.
y-6=7x3+73⋅1
Step 2.3.1.5
Multiply 73 by 1.
y-6=7x3+73
y-6=7x3+73
Step 2.3.2
Move all terms not containing y to the right side of the equation.
Step 2.3.2.1
Add 6 to both sides of the equation.
y=7x3+73+6
Step 2.3.2.2
To write 6 as a fraction with a common denominator, multiply by 33.
y=7x3+73+6⋅33
Step 2.3.2.3
Combine 6 and 33.
y=7x3+73+6⋅33
Step 2.3.2.4
Combine the numerators over the common denominator.
y=7x3+7+6⋅33
Step 2.3.2.5
Simplify the numerator.
Step 2.3.2.5.1
Multiply 6 by 3.
y=7x3+7+183
Step 2.3.2.5.2
Add 7 and 18.
y=7x3+253
y=7x3+253
y=7x3+253
Step 2.3.3
Reorder terms.
y=73x+253
y=73x+253
y=73x+253
Step 3