Calculus Examples

Find the Tangent Line at (0,1/3) f(x)=(e^x)/(x+3) , (0,1/3)
,
Step 1
Find the first derivative and evaluate at and to find the slope of the tangent line.
Tap for more steps...
Step 1.1
Differentiate using the Quotient Rule which states that is where and .
Step 1.2
Differentiate using the Exponential Rule which states that is where =.
Step 1.3
Differentiate.
Tap for more steps...
Step 1.3.1
By the Sum Rule, the derivative of with respect to is .
Step 1.3.2
Differentiate using the Power Rule which states that is where .
Step 1.3.3
Since is constant with respect to , the derivative of with respect to is .
Step 1.3.4
Simplify the expression.
Tap for more steps...
Step 1.3.4.1
Add and .
Step 1.3.4.2
Multiply by .
Step 1.4
Simplify.
Tap for more steps...
Step 1.4.1
Apply the distributive property.
Step 1.4.2
Subtract from .
Step 1.4.3
Reorder terms.
Step 1.4.4
Factor out of .
Tap for more steps...
Step 1.4.4.1
Factor out of .
Step 1.4.4.2
Factor out of .
Step 1.4.4.3
Factor out of .
Step 1.5
Evaluate the derivative at .
Step 1.6
Simplify.
Tap for more steps...
Step 1.6.1
Simplify the numerator.
Tap for more steps...
Step 1.6.1.1
Add and .
Step 1.6.1.2
Anything raised to is .
Step 1.6.1.3
Multiply by .
Step 1.6.2
Simplify the denominator.
Tap for more steps...
Step 1.6.2.1
Add and .
Step 1.6.2.2
Raise to the power of .
Step 2
Plug the slope and point values into the point-slope formula and solve for .
Tap for more steps...
Step 2.1
Use the slope and a given point to substitute for and in the point-slope form , which is derived from the slope equation .
Step 2.2
Simplify the equation and keep it in point-slope form.
Step 2.3
Solve for .
Tap for more steps...
Step 2.3.1
Simplify .
Tap for more steps...
Step 2.3.1.1
Add and .
Step 2.3.1.2
Combine and .
Step 2.3.2
Add to both sides of the equation.
Step 2.3.3
Reorder terms.
Step 3