Calculus Examples

Find the Tangent Line at (1,1/2) y=1/(2x^3) , (1,1/2)
y=12x3y=12x3 , (1,12)(1,12)
Step 1
Find the first derivative and evaluate at x=1x=1 and y=12y=12 to find the slope of the tangent line.
Tap for more steps...
Step 1.1
Since 1212 is constant with respect to xx, the derivative of 12x312x3 with respect to xx is 12ddx[1x3]12ddx[1x3].
12ddx[1x3]12ddx[1x3]
Step 1.2
Apply basic rules of exponents.
Tap for more steps...
Step 1.2.1
Rewrite 1x31x3 as (x3)-1(x3)1.
12ddx[(x3)-1]12ddx[(x3)1]
Step 1.2.2
Multiply the exponents in (x3)-1(x3)1.
Tap for more steps...
Step 1.2.2.1
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
12ddx[x3-1]12ddx[x31]
Step 1.2.2.2
Multiply 33 by -11.
12ddx[x-3]12ddx[x3]
12ddx[x-3]12ddx[x3]
12ddx[x-3]12ddx[x3]
Step 1.3
Differentiate using the Power Rule which states that ddx[xn]ddx[xn] is nxn-1nxn1 where n=-3n=3.
12(-3x-4)12(3x4)
Step 1.4
Combine fractions.
Tap for more steps...
Step 1.4.1
Combine -33 and 1212.
-32x-432x4
Step 1.4.2
Combine -3232 and x-4x4.
-3x-423x42
Step 1.4.3
Simplify the expression.
Tap for more steps...
Step 1.4.3.1
Move x-4x4 to the denominator using the negative exponent rule b-n=1bnbn=1bn.
-32x432x4
Step 1.4.3.2
Move the negative in front of the fraction.
-32x432x4
-32x432x4
-32x432x4
Step 1.5
Evaluate the derivative at x=1x=1.
-32(1)432(1)4
Step 1.6
Simplify.
Tap for more steps...
Step 1.6.1
One to any power is one.
-321321
Step 1.6.2
Multiply 22 by 11.
-3232
-3232
-3232
Step 2
Plug the slope and point values into the point-slope formula and solve for yy.
Tap for more steps...
Step 2.1
Use the slope -3232 and a given point (1,12)(1,12) to substitute for x1x1 and y1y1 in the point-slope form y-y1=m(x-x1)yy1=m(xx1), which is derived from the slope equation m=y2-y1x2-x1m=y2y1x2x1.
y-(12)=-32(x-(1))
Step 2.2
Simplify the equation and keep it in point-slope form.
y-12=-32(x-1)
Step 2.3
Solve for y.
Tap for more steps...
Step 2.3.1
Simplify -32(x-1).
Tap for more steps...
Step 2.3.1.1
Rewrite.
y-12=0+0-32(x-1)
Step 2.3.1.2
Simplify by adding zeros.
y-12=-32(x-1)
Step 2.3.1.3
Apply the distributive property.
y-12=-32x-32-1
Step 2.3.1.4
Combine x and 32.
y-12=-x32-32-1
Step 2.3.1.5
Multiply -32-1.
Tap for more steps...
Step 2.3.1.5.1
Multiply -1 by -1.
y-12=-x32+1(32)
Step 2.3.1.5.2
Multiply 32 by 1.
y-12=-x32+32
y-12=-x32+32
Step 2.3.1.6
Move 3 to the left of x.
y-12=-3x2+32
y-12=-3x2+32
Step 2.3.2
Move all terms not containing y to the right side of the equation.
Tap for more steps...
Step 2.3.2.1
Add 12 to both sides of the equation.
y=-3x2+32+12
Step 2.3.2.2
Combine the numerators over the common denominator.
y=-3x+3+12
Step 2.3.2.3
Add 3 and 1.
y=-3x+42
Step 2.3.2.4
Split the fraction -3x+42 into two fractions.
y=-3x2+42
Step 2.3.2.5
Simplify each term.
Tap for more steps...
Step 2.3.2.5.1
Move the negative in front of the fraction.
y=-3x2+42
Step 2.3.2.5.2
Divide 4 by 2.
y=-3x2+2
y=-3x2+2
y=-3x2+2
Step 2.3.3
Write in y=mx+b form.
Tap for more steps...
Step 2.3.3.1
Reorder terms.
y=-(32x)+2
Step 2.3.3.2
Remove parentheses.
y=-32x+2
y=-32x+2
y=-32x+2
y=-32x+2
Step 3
 [x2  12  π  xdx ]