Enter a problem...
Calculus Examples
y=12x3y=12x3 , (1,12)(1,12)
Step 1
Step 1.1
Since 1212 is constant with respect to xx, the derivative of 12x312x3 with respect to xx is 12ddx[1x3]12ddx[1x3].
12ddx[1x3]12ddx[1x3]
Step 1.2
Apply basic rules of exponents.
Step 1.2.1
Rewrite 1x31x3 as (x3)-1(x3)−1.
12ddx[(x3)-1]12ddx[(x3)−1]
Step 1.2.2
Multiply the exponents in (x3)-1(x3)−1.
Step 1.2.2.1
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
12ddx[x3⋅-1]12ddx[x3⋅−1]
Step 1.2.2.2
Multiply 33 by -1−1.
12ddx[x-3]12ddx[x−3]
12ddx[x-3]12ddx[x−3]
12ddx[x-3]12ddx[x−3]
Step 1.3
Differentiate using the Power Rule which states that ddx[xn]ddx[xn] is nxn-1nxn−1 where n=-3n=−3.
12(-3x-4)12(−3x−4)
Step 1.4
Combine fractions.
Step 1.4.1
Combine -3−3 and 1212.
-32x-4−32x−4
Step 1.4.2
Combine -32−32 and x-4x−4.
-3x-42−3x−42
Step 1.4.3
Simplify the expression.
Step 1.4.3.1
Move x-4x−4 to the denominator using the negative exponent rule b-n=1bnb−n=1bn.
-32x4−32x4
Step 1.4.3.2
Move the negative in front of the fraction.
-32x4−32x4
-32x4−32x4
-32x4−32x4
Step 1.5
Evaluate the derivative at x=1x=1.
-32(1)4−32(1)4
Step 1.6
Simplify.
Step 1.6.1
One to any power is one.
-32⋅1−32⋅1
Step 1.6.2
Multiply 22 by 11.
-32−32
-32−32
-32−32
Step 2
Step 2.1
Use the slope -32−32 and a given point (1,12)(1,12) to substitute for x1x1 and y1y1 in the point-slope form y-y1=m(x-x1)y−y1=m(x−x1), which is derived from the slope equation m=y2-y1x2-x1m=y2−y1x2−x1.
y-(12)=-32⋅(x-(1))
Step 2.2
Simplify the equation and keep it in point-slope form.
y-12=-32⋅(x-1)
Step 2.3
Solve for y.
Step 2.3.1
Simplify -32⋅(x-1).
Step 2.3.1.1
Rewrite.
y-12=0+0-32⋅(x-1)
Step 2.3.1.2
Simplify by adding zeros.
y-12=-32⋅(x-1)
Step 2.3.1.3
Apply the distributive property.
y-12=-32x-32⋅-1
Step 2.3.1.4
Combine x and 32.
y-12=-x⋅32-32⋅-1
Step 2.3.1.5
Multiply -32⋅-1.
Step 2.3.1.5.1
Multiply -1 by -1.
y-12=-x⋅32+1(32)
Step 2.3.1.5.2
Multiply 32 by 1.
y-12=-x⋅32+32
y-12=-x⋅32+32
Step 2.3.1.6
Move 3 to the left of x.
y-12=-3x2+32
y-12=-3x2+32
Step 2.3.2
Move all terms not containing y to the right side of the equation.
Step 2.3.2.1
Add 12 to both sides of the equation.
y=-3x2+32+12
Step 2.3.2.2
Combine the numerators over the common denominator.
y=-3x+3+12
Step 2.3.2.3
Add 3 and 1.
y=-3x+42
Step 2.3.2.4
Split the fraction -3x+42 into two fractions.
y=-3x2+42
Step 2.3.2.5
Simplify each term.
Step 2.3.2.5.1
Move the negative in front of the fraction.
y=-3x2+42
Step 2.3.2.5.2
Divide 4 by 2.
y=-3x2+2
y=-3x2+2
y=-3x2+2
Step 2.3.3
Write in y=mx+b form.
Step 2.3.3.1
Reorder terms.
y=-(32x)+2
Step 2.3.3.2
Remove parentheses.
y=-32x+2
y=-32x+2
y=-32x+2
y=-32x+2
Step 3