Enter a problem...
Calculus Examples
y=e2x at x=12ln(2)
Step 1
Step 1.1
Substitute 12⋅ln(2) in for x.
y=e2(12⋅ln(2))
Step 1.2
Simplify e2(12⋅ln(2)).
Step 1.2.1
Simplify 12ln(2) by moving 12 inside the logarithm.
y=e2ln(212)
Step 1.2.2
Simplify 2ln(212) by moving 2 inside the logarithm.
y=eln((212)2)
Step 1.2.3
Exponentiation and log are inverse functions.
y=(212)2
Step 1.2.4
Multiply the exponents in (212)2.
Step 1.2.4.1
Apply the power rule and multiply exponents, (am)n=amn.
y=212⋅2
Step 1.2.4.2
Cancel the common factor of 2.
Step 1.2.4.2.1
Cancel the common factor.
y=212⋅2
Step 1.2.4.2.2
Rewrite the expression.
y=21
y=21
y=21
Step 1.2.5
Evaluate the exponent.
y=2
y=2
y=2
Step 2
Step 2.1
Differentiate using the chain rule, which states that ddx[f(g(x))] is f′(g(x))g′(x) where f(x)=ex and g(x)=2x.
Step 2.1.1
To apply the Chain Rule, set u as 2x.
ddu[eu]ddx[2x]
Step 2.1.2
Differentiate using the Exponential Rule which states that ddu[au] is auln(a) where a=e.
euddx[2x]
Step 2.1.3
Replace all occurrences of u with 2x.
e2xddx[2x]
e2xddx[2x]
Step 2.2
Differentiate.
Step 2.2.1
Since 2 is constant with respect to x, the derivative of 2x with respect to x is 2ddx[x].
e2x(2ddx[x])
Step 2.2.2
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=1.
e2x(2⋅1)
Step 2.2.3
Simplify the expression.
Step 2.2.3.1
Multiply 2 by 1.
e2x⋅2
Step 2.2.3.2
Move 2 to the left of e2x.
2e2x
2e2x
2e2x
Step 2.3
Evaluate the derivative at x=12⋅ln(2).
2e2(12⋅ln(2))
Step 2.4
Simplify.
Step 2.4.1
Simplify 12ln(2) by moving 12 inside the logarithm.
2e2ln(212)
Step 2.4.2
Simplify 2ln(212) by moving 2 inside the logarithm.
2eln((212)2)
Step 2.4.3
Exponentiation and log are inverse functions.
2(212)2
Step 2.4.4
Multiply the exponents in (212)2.
Step 2.4.4.1
Apply the power rule and multiply exponents, (am)n=amn.
2⋅212⋅2
Step 2.4.4.2
Cancel the common factor of 2.
Step 2.4.4.2.1
Cancel the common factor.
2⋅212⋅2
Step 2.4.4.2.2
Rewrite the expression.
2⋅21
2⋅21
2⋅21
Step 2.4.5
Evaluate the exponent.
2⋅2
Step 2.4.6
Multiply 2 by 2.
4
4
4
Step 3
Step 3.1
Use the slope 4 and a given point (12⋅ln(2),2) to substitute for x1 and y1 in the point-slope form y-y1=m(x-x1), which is derived from the slope equation m=y2-y1x2-x1.
y-(2)=4⋅(x-(12⋅ln(2)))
Step 3.2
Simplify the equation and keep it in point-slope form.
y-2=4⋅(x-ln(212))
Step 3.3
Solve for y.
Step 3.3.1
Simplify 4⋅(x-ln(212)).
Step 3.3.1.1
Rewrite.
y-2=0+0+4⋅(x-ln(212))
Step 3.3.1.2
Simplify by adding zeros.
y-2=4⋅(x-ln(212))
Step 3.3.1.3
Apply the distributive property.
y-2=4x+4(-ln(212))
Step 3.3.1.4
Multiply 4(-ln(212)).
Step 3.3.1.4.1
Multiply -1 by 4.
y-2=4x-4ln(212)
Step 3.3.1.4.2
Simplify -4ln(212) by moving 4 inside the logarithm.
y-2=4x-ln((212)4)
y-2=4x-ln((212)4)
Step 3.3.1.5
Simplify each term.
Step 3.3.1.5.1
Multiply the exponents in (212)4.
Step 3.3.1.5.1.1
Apply the power rule and multiply exponents, (am)n=amn.
y-2=4x-ln(212⋅4)
Step 3.3.1.5.1.2
Cancel the common factor of 2.
Step 3.3.1.5.1.2.1
Factor 2 out of 4.
y-2=4x-ln(212⋅(2(2)))
Step 3.3.1.5.1.2.2
Cancel the common factor.
y-2=4x-ln(212⋅(2⋅2))
Step 3.3.1.5.1.2.3
Rewrite the expression.
y-2=4x-ln(22)
y-2=4x-ln(22)
y-2=4x-ln(22)
Step 3.3.1.5.2
Raise 2 to the power of 2.
y-2=4x-ln(4)
y-2=4x-ln(4)
y-2=4x-ln(4)
Step 3.3.2
Add 2 to both sides of the equation.
y=4x-ln(4)+2
y=4x-ln(4)+2
y=4x-ln(4)+2
Step 4