Calculus Examples

Find the Tangent Line at x=1/2⋅ln(2) y=e^(2x) at x=1/2 natural log of 2
y=e2x at x=12ln(2)
Step 1
Find the corresponding y-value to x=12ln(2).
Tap for more steps...
Step 1.1
Substitute 12ln(2) in for x.
y=e2(12ln(2))
Step 1.2
Simplify e2(12ln(2)).
Tap for more steps...
Step 1.2.1
Simplify 12ln(2) by moving 12 inside the logarithm.
y=e2ln(212)
Step 1.2.2
Simplify 2ln(212) by moving 2 inside the logarithm.
y=eln((212)2)
Step 1.2.3
Exponentiation and log are inverse functions.
y=(212)2
Step 1.2.4
Multiply the exponents in (212)2.
Tap for more steps...
Step 1.2.4.1
Apply the power rule and multiply exponents, (am)n=amn.
y=2122
Step 1.2.4.2
Cancel the common factor of 2.
Tap for more steps...
Step 1.2.4.2.1
Cancel the common factor.
y=2122
Step 1.2.4.2.2
Rewrite the expression.
y=21
y=21
y=21
Step 1.2.5
Evaluate the exponent.
y=2
y=2
y=2
Step 2
Find the first derivative and evaluate at x=12ln(2) and y=2 to find the slope of the tangent line.
Tap for more steps...
Step 2.1
Differentiate using the chain rule, which states that ddx[f(g(x))] is f(g(x))g(x) where f(x)=ex and g(x)=2x.
Tap for more steps...
Step 2.1.1
To apply the Chain Rule, set u as 2x.
ddu[eu]ddx[2x]
Step 2.1.2
Differentiate using the Exponential Rule which states that ddu[au] is auln(a) where a=e.
euddx[2x]
Step 2.1.3
Replace all occurrences of u with 2x.
e2xddx[2x]
e2xddx[2x]
Step 2.2
Differentiate.
Tap for more steps...
Step 2.2.1
Since 2 is constant with respect to x, the derivative of 2x with respect to x is 2ddx[x].
e2x(2ddx[x])
Step 2.2.2
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=1.
e2x(21)
Step 2.2.3
Simplify the expression.
Tap for more steps...
Step 2.2.3.1
Multiply 2 by 1.
e2x2
Step 2.2.3.2
Move 2 to the left of e2x.
2e2x
2e2x
2e2x
Step 2.3
Evaluate the derivative at x=12ln(2).
2e2(12ln(2))
Step 2.4
Simplify.
Tap for more steps...
Step 2.4.1
Simplify 12ln(2) by moving 12 inside the logarithm.
2e2ln(212)
Step 2.4.2
Simplify 2ln(212) by moving 2 inside the logarithm.
2eln((212)2)
Step 2.4.3
Exponentiation and log are inverse functions.
2(212)2
Step 2.4.4
Multiply the exponents in (212)2.
Tap for more steps...
Step 2.4.4.1
Apply the power rule and multiply exponents, (am)n=amn.
22122
Step 2.4.4.2
Cancel the common factor of 2.
Tap for more steps...
Step 2.4.4.2.1
Cancel the common factor.
22122
Step 2.4.4.2.2
Rewrite the expression.
221
221
221
Step 2.4.5
Evaluate the exponent.
22
Step 2.4.6
Multiply 2 by 2.
4
4
4
Step 3
Plug the slope and point values into the point-slope formula and solve for y.
Tap for more steps...
Step 3.1
Use the slope 4 and a given point (12ln(2),2) to substitute for x1 and y1 in the point-slope form y-y1=m(x-x1), which is derived from the slope equation m=y2-y1x2-x1.
y-(2)=4(x-(12ln(2)))
Step 3.2
Simplify the equation and keep it in point-slope form.
y-2=4(x-ln(212))
Step 3.3
Solve for y.
Tap for more steps...
Step 3.3.1
Simplify 4(x-ln(212)).
Tap for more steps...
Step 3.3.1.1
Rewrite.
y-2=0+0+4(x-ln(212))
Step 3.3.1.2
Simplify by adding zeros.
y-2=4(x-ln(212))
Step 3.3.1.3
Apply the distributive property.
y-2=4x+4(-ln(212))
Step 3.3.1.4
Multiply 4(-ln(212)).
Tap for more steps...
Step 3.3.1.4.1
Multiply -1 by 4.
y-2=4x-4ln(212)
Step 3.3.1.4.2
Simplify -4ln(212) by moving 4 inside the logarithm.
y-2=4x-ln((212)4)
y-2=4x-ln((212)4)
Step 3.3.1.5
Simplify each term.
Tap for more steps...
Step 3.3.1.5.1
Multiply the exponents in (212)4.
Tap for more steps...
Step 3.3.1.5.1.1
Apply the power rule and multiply exponents, (am)n=amn.
y-2=4x-ln(2124)
Step 3.3.1.5.1.2
Cancel the common factor of 2.
Tap for more steps...
Step 3.3.1.5.1.2.1
Factor 2 out of 4.
y-2=4x-ln(212(2(2)))
Step 3.3.1.5.1.2.2
Cancel the common factor.
y-2=4x-ln(212(22))
Step 3.3.1.5.1.2.3
Rewrite the expression.
y-2=4x-ln(22)
y-2=4x-ln(22)
y-2=4x-ln(22)
Step 3.3.1.5.2
Raise 2 to the power of 2.
y-2=4x-ln(4)
y-2=4x-ln(4)
y-2=4x-ln(4)
Step 3.3.2
Add 2 to both sides of the equation.
y=4x-ln(4)+2
y=4x-ln(4)+2
y=4x-ln(4)+2
Step 4
 [x2  12  π  xdx ]