Enter a problem...
Calculus Examples
f(x)=x3-7x+1f(x)=x3−7x+1 ; (1,-5)(1,−5)
Step 1
Step 1.1
Differentiate.
Step 1.1.1
By the Sum Rule, the derivative of x3-7x+1x3−7x+1 with respect to xx is ddx[x3]+ddx[-7x]+ddx[1]ddx[x3]+ddx[−7x]+ddx[1].
ddx[x3]+ddx[-7x]+ddx[1]ddx[x3]+ddx[−7x]+ddx[1]
Step 1.1.2
Differentiate using the Power Rule which states that ddx[xn]ddx[xn] is nxn-1nxn−1 where n=3n=3.
3x2+ddx[-7x]+ddx[1]3x2+ddx[−7x]+ddx[1]
3x2+ddx[-7x]+ddx[1]3x2+ddx[−7x]+ddx[1]
Step 1.2
Evaluate ddx[-7x]ddx[−7x].
Step 1.2.1
Since -7−7 is constant with respect to xx, the derivative of -7x−7x with respect to xx is -7ddx[x]−7ddx[x].
3x2-7ddx[x]+ddx[1]3x2−7ddx[x]+ddx[1]
Step 1.2.2
Differentiate using the Power Rule which states that ddx[xn]ddx[xn] is nxn-1nxn−1 where n=1n=1.
3x2-7⋅1+ddx[1]3x2−7⋅1+ddx[1]
Step 1.2.3
Multiply -7−7 by 11.
3x2-7+ddx[1]3x2−7+ddx[1]
3x2-7+ddx[1]3x2−7+ddx[1]
Step 1.3
Differentiate using the Constant Rule.
Step 1.3.1
Since 11 is constant with respect to xx, the derivative of 11 with respect to xx is 00.
3x2-7+03x2−7+0
Step 1.3.2
Add 3x2-73x2−7 and 00.
3x2-73x2−7
3x2-73x2−7
Step 1.4
Evaluate the derivative at x=1x=1.
3(1)2-7
Step 1.5
Simplify.
Step 1.5.1
Simplify each term.
Step 1.5.1.1
One to any power is one.
3⋅1-7
Step 1.5.1.2
Multiply 3 by 1.
3-7
3-7
Step 1.5.2
Subtract 7 from 3.
-4
-4
-4
Step 2
Step 2.1
Use the slope -4 and a given point (1,-5) to substitute for x1 and y1 in the point-slope form y-y1=m(x-x1), which is derived from the slope equation m=y2-y1x2-x1.
y-(-5)=-4⋅(x-(1))
Step 2.2
Simplify the equation and keep it in point-slope form.
y+5=-4⋅(x-1)
Step 2.3
Solve for y.
Step 2.3.1
Simplify -4⋅(x-1).
Step 2.3.1.1
Rewrite.
y+5=0+0-4⋅(x-1)
Step 2.3.1.2
Simplify by adding zeros.
y+5=-4⋅(x-1)
Step 2.3.1.3
Apply the distributive property.
y+5=-4x-4⋅-1
Step 2.3.1.4
Multiply -4 by -1.
y+5=-4x+4
y+5=-4x+4
Step 2.3.2
Move all terms not containing y to the right side of the equation.
Step 2.3.2.1
Subtract 5 from both sides of the equation.
y=-4x+4-5
Step 2.3.2.2
Subtract 5 from 4.
y=-4x-1
y=-4x-1
y=-4x-1
y=-4x-1
Step 3