Enter a problem...
Calculus Examples
,
Step 1
Step 1.1
Differentiate using the Constant Multiple Rule.
Step 1.1.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.1.2
Rewrite as .
Step 1.2
Differentiate using the chain rule, which states that is where and .
Step 1.2.1
To apply the Chain Rule, set as .
Step 1.2.2
Differentiate using the Power Rule which states that is where .
Step 1.2.3
Replace all occurrences of with .
Step 1.3
Differentiate.
Step 1.3.1
Multiply by .
Step 1.3.2
By the Sum Rule, the derivative of with respect to is .
Step 1.3.3
Since is constant with respect to , the derivative of with respect to is .
Step 1.3.4
Add and .
Step 1.4
Differentiate using the chain rule, which states that is where and .
Step 1.4.1
To apply the Chain Rule, set as .
Step 1.4.2
Differentiate using the Exponential Rule which states that is where =.
Step 1.4.3
Replace all occurrences of with .
Step 1.5
Differentiate.
Step 1.5.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.5.2
Multiply by .
Step 1.5.3
Differentiate using the Power Rule which states that is where .
Step 1.5.4
Multiply by .
Step 1.6
Simplify.
Step 1.6.1
Reorder the factors of .
Step 1.6.2
Rewrite the expression using the negative exponent rule .
Step 1.6.3
Multiply .
Step 1.6.3.1
Combine and .
Step 1.6.3.2
Combine and .
Step 1.7
Evaluate the derivative at .
Step 1.8
Simplify.
Step 1.8.1
Simplify the numerator.
Step 1.8.1.1
Multiply by .
Step 1.8.1.2
Anything raised to is .
Step 1.8.2
Simplify the denominator.
Step 1.8.2.1
Multiply by .
Step 1.8.2.2
Anything raised to is .
Step 1.8.2.3
Add and .
Step 1.8.2.4
Raise to the power of .
Step 1.8.3
Reduce the expression by cancelling the common factors.
Step 1.8.3.1
Multiply by .
Step 1.8.3.2
Cancel the common factor of and .
Step 1.8.3.2.1
Factor out of .
Step 1.8.3.2.2
Cancel the common factors.
Step 1.8.3.2.2.1
Factor out of .
Step 1.8.3.2.2.2
Cancel the common factor.
Step 1.8.3.2.2.3
Rewrite the expression.
Step 2
Step 2.1
Use the slope and a given point to substitute for and in the point-slope form , which is derived from the slope equation .
Step 2.2
Simplify the equation and keep it in point-slope form.
Step 2.3
Solve for .
Step 2.3.1
Simplify .
Step 2.3.1.1
Add and .
Step 2.3.1.2
Combine and .
Step 2.3.2
Add to both sides of the equation.
Step 2.3.3
Reorder terms.
Step 3